Discover Awesome MCP Servers

Extend your agent with 14,499 capabilities via MCP servers.

All14,499
Remote MCP Server on Cloudflare

Remote MCP Server on Cloudflare

MCP 数据库服务器 (TypeScript)

MCP 数据库服务器 (TypeScript)

s-GitHubTestRepo

s-GitHubTestRepo

从 MCP 服务器演示创建。

Columbia MCP Servers

Columbia MCP Servers

镜子 (jìng zi)

🔐 get-mcp-keys

🔐 get-mcp-keys

一个轻量级的实用工具,可以安全地从您的主目录加载 Cursor MCP 服务器的 API 密钥,防止在代码仓库中意外暴露密钥。在保持与 AI 编码助手无缝集成的同时,确保您的凭据安全。

attio-mcp-server

attio-mcp-server

镜子 (jìng zi)

MCP Test Repository

MCP Test Repository

一个通过 GitHub MCP 服务器创建的测试仓库。

MCP Server

MCP Server

Okay, here are a few possible translations of "Server implementation for MCP," depending on the specific context of "MCP": **1. If "MCP" refers to Minecraft Coder Pack (a tool for decompiling, deobfuscating, and re-compiling Minecraft code):** * **Simplified Chinese:** MCP 的服务器端实现 (MCP de fúwùqì duān shíxiàn) * **Traditional Chinese:** MCP 的伺服器端實作 (MCP de sìfúqì duān shízuò) * **Explanation:** This is the most likely translation if you're talking about creating a server-side mod or plugin that interacts with Minecraft's code using MCP. "服务器端/伺服器端" means "server-side," and "实现/實作" means "implementation." **2. If "MCP" refers to a specific protocol or system (e.g., a proprietary communication protocol):** * **Simplified Chinese:** MCP 的服务器实现 (MCP de fúwùqì shíxiàn) * **Traditional Chinese:** MCP 的伺服器實作 (MCP de sìfúqì shízuò) * **Explanation:** This is a more general translation. It assumes MCP is a defined thing (protocol, system, etc.) and you're talking about creating a server that implements it. **3. If "MCP" refers to a Master Control Program (like in the movie Tron):** * This is less likely, but if it's the case, the translation would be more conceptual: * **Simplified Chinese:** 主控程序的服务器端实现 (Zhǔkòng chéngxù de fúwùqì duān shíxiàn) * **Traditional Chinese:** 主控程式的伺服器端實作 (Zhǔkòng chéngshì de sìfúqì duān shízuò) * **Explanation:** This translates to "Server-side implementation of the Master Control Program." **Key Considerations:** * **Context is crucial:** The best translation depends entirely on what "MCP" means in your specific situation. * **Simplified vs. Traditional Chinese:** Choose the appropriate version based on your target audience (Mainland China uses Simplified, Taiwan and Hong Kong use Traditional). * **"实现/實作" vs. other words:** While "实现/實作" is a good general translation for "implementation," other words like "执行/執行" (zhíxíng/zhíxíng - execute) or "构建/構建" (gòujiàn/gòujiàn - build) might be more appropriate depending on the specific nuance you want to convey. To give you the *best* translation, please provide more context about what "MCP" refers to. For example: * "I'm writing a server-side mod for Minecraft using MCP." * "I need to implement the MCP protocol on a server." * "I'm designing a server that acts as the MCP for a distributed system." With more information, I can provide a more accurate and helpful translation.

playwright-mcp-fetch

playwright-mcp-fetch

这个工具提供了一个模型上下文协议(MCP)服务器,用于从网站获取内容,并使用 Playwright 将其转换为不同的格式。

MCP Weather Server

MCP Weather Server

For MCP, a weather server application could be translated as: **MCP 的天气服务器应用程序** This is a direct and clear translation. Here's a breakdown: * **MCP:** Remains as MCP (assuming it's an acronym or proper noun). * **的 (de):** Possessive particle, similar to "of" or "'s" in English. * **天气 (tiān qì):** Weather * **服务器 (fú wù qì):** Server * **应用程序 (yìng yòng chéng xù):** Application Therefore, the whole phrase means "Weather server application of/for MCP".

mcp-server-hub

mcp-server-hub

创建一个单例 MCP 服务器中心,可供 Cline/Roo 代码使用。

Bitcoin MCP Server

Bitcoin MCP Server

一个使用 CoinGecko API (api.coingecko.com/api/v3) 追踪比特币价格的 Spring Boot/AI MCP 服务器的演示。

Meta MCP Server

Meta MCP Server

镜子 (jìng zi)

Cinema4D MCP — Model Context Protocol (MCP) Server

Cinema4D MCP — Model Context Protocol (MCP) Server

将 Cinema 4D 连接到 Claude,通过自然语言命令实现 AI 辅助的 3D 建模和场景操作。

MCPE_servers

MCPE_servers

MCP Memos

MCP Memos

A memo tool based on MCP protocol that helps developers quickly save and retrieve text information without interrupting their workflow.

PuppyGraph MCP Server

PuppyGraph MCP Server

WhatsApp MCP Server

WhatsApp MCP Server

WhatsApp MCP 服务器 (WhatsApp MCP fúwùqì)

Manifold Markets MCP Server

Manifold Markets MCP Server

镜子 (jìng zi)

Solana MCP Server

Solana MCP Server

镜子 (jìng zi)

mcp-email-server

mcp-email-server

镜子 (jìng zi)

yapi-mcp-server

yapi-mcp-server

Yapi 的模型上下文协议 (MCP) 服务器。

mcp-demo

mcp-demo

一个使用 mcp-server 库的小型演示项目。

Kibela MCP Server

Kibela MCP Server

镜子 (jìng zi)

tavily-server MCP Server

tavily-server MCP Server

Tavily MCP 服务器,适用于 Cline

任务API

任务API

discover prompt

MCP Claude Code

MCP Claude Code

一个实现了类似 Claude Code 功能的 MCP 服务器,允许 AI 通过直接的文件系统交互来分析代码库、修改文件、执行命令和管理项目。 (Alternatively, a slightly more technical translation:) 一个 MCP 服务器,它实现了类似 Claude Code 的功能,允许 AI 通过直接的文件系统交互来分析代码库、修改文件、执行命令以及管理项目。

mcp-server-cex-bn

mcp-server-cex-bn

镜子 (jìng zi)

Model-Context-Protocol

Model-Context-Protocol

Okay, here's a Python code example using Flask to create a simple server that integrates with a (placeholder) LLaMA model for summarization. This example focuses on the structure and integration points. **Important considerations and placeholders are marked with comments.** ```python from flask import Flask, request, jsonify import torch # Import PyTorch #import llama # Placeholder: Replace with your actual LLaMA model import #from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Alternative for Hugging Face models app = Flask(__name__) # --- Model Loading and Setup --- # This section is CRUCIAL and needs to be adapted to your specific LLaMA model. # Option 1: If you have a custom LLaMA implementation # model = llama.load_model("path/to/your/llama/model") # Replace with your model loading function # Option 2: If you're using a Hugging Face Transformers model (e.g., a T5-based model for summarization) # model_name = "google/flan-t5-base" # Or a different summarization model # tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Option 3: Placeholder - Replace with your actual model loading def load_model(): """Placeholder function to simulate loading a model.""" print("Loading model (replace with actual model loading code)") # Replace this with your actual model loading logic # For example: # model = torch.load("path/to/your/model.pth") # model.eval() # Set to evaluation mode if needed return "Dummy Model" # Replace with your actual model model = load_model() # Load the model when the app starts # --- Summarization Function --- def summarize_text(text): """ Summarizes the given text using the loaded LLaMA model. Args: text: The input text to summarize. Returns: The summarized text. """ print(f"Summarizing text: {text[:50]}...") # Print first 50 characters for debugging # --- Model Inference --- # This section needs to be adapted to your specific LLaMA model's API. # Option 1: Custom LLaMA model # summary = model.summarize(text) # Replace with your model's summarization function # Option 2: Hugging Face Transformers model # inputs = tokenizer(text, return_tensors="pt", max_length=1024, truncation=True) # summary_ids = model.generate(inputs.input_ids, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True) # summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Option 3: Placeholder - Replace with your actual model inference code summary = f"Placeholder Summary for: {text[:20]}..." # Replace with actual summarization print(f"Generated summary: {summary[:50]}...") # Print first 50 characters for debugging return summary # --- Flask API Endpoint --- @app.route('/summarize', methods=['POST']) def summarize_endpoint(): """ API endpoint for summarizing text. Expects a JSON payload with a 'text' field. """ try: data = request.get_json() text = data.get('text') if not text: return jsonify({'error': 'Missing "text" field in request'}), 400 summary = summarize_text(text) return jsonify({'summary': summary}) except Exception as e: print(f"Error during summarization: {e}") # Log the error return jsonify({'error': str(e)}), 500 # Return error message and 500 status @app.route('/health', methods=['GET']) def health_check(): """Simple health check endpoint.""" return jsonify({'status': 'ok'}) if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=5000) # Make sure debug is False in production ``` Key improvements and explanations: * **Clear Placeholders:** The code uses `Placeholder` comments extensively to highlight where you *must* replace the example code with your actual LLaMA model integration. This is the most important part. * **Error Handling:** Includes `try...except` blocks to catch potential errors during the summarization process and return informative error messages to the client. This is crucial for debugging and production stability. * **Health Check Endpoint:** Adds a `/health` endpoint for monitoring the server's status. This is essential for deployment and monitoring. * **Model Loading:** Demonstrates how to load the model at the start of the application. This avoids reloading the model for each request, which would be very inefficient. The `load_model()` function is a placeholder that you *must* replace with your actual model loading code. * **Summarization Function:** The `summarize_text()` function encapsulates the summarization logic. This makes the code more modular and easier to test. Again, the model inference part is a placeholder. * **Flask Setup:** Sets up a basic Flask application with a `/summarize` endpoint that accepts POST requests with a JSON payload containing the text to summarize. * **JSON Handling:** Uses `request.get_json()` to properly parse the JSON payload from the request. * **Return Values:** Returns JSON responses with the summary or error message. * **Logging:** Includes `print` statements for debugging. In a production environment, you should replace these with proper logging using the `logging` module. * **Hugging Face Transformers Example:** Includes an example of how to integrate with a Hugging Face Transformers model for summarization. This is a common way to use pre-trained models. You'll need to install the `transformers` library: `pip install transformers`. * **`host='0.0.0.0'`:** This makes the server accessible from outside the local machine. Be careful when using this in production, as it can expose your server to the internet. * **`debug=True`:** This enables debug mode, which is useful for development but should be disabled in production. * **Comments:** Extensive comments explain the purpose of each section of the code. **How to Use:** 1. **Install Flask:** `pip install Flask` 2. **Install PyTorch:** `pip install torch` (if you are using PyTorch) 3. **Install Transformers:** `pip install transformers` (if you are using a Hugging Face model) 4. **Replace Placeholders:** **This is the most important step.** Replace the placeholder code with your actual LLaMA model loading and inference code. This will depend on how your LLaMA model is implemented and how you want to interact with it. 5. **Run the Application:** `python your_script_name.py` 6. **Send a Request:** Use `curl`, `Postman`, or a similar tool to send a POST request to `http://localhost:5000/summarize` with a JSON payload like this: ```json { "text": "This is a long piece of text that I want to summarize. It contains many sentences and paragraphs. The goal is to reduce the text to its most important points." } ``` **Chinese Translation of Key Comments:** ``` # --- 模型加载和设置 --- # 这部分至关重要,需要根据您特定的 LLaMA 模型进行调整。 # --- 模型推理 --- # 这部分需要根据您特定的 LLaMA 模型的 API 进行调整。 # 替换占位符:这是最重要的步骤。将占位符代码替换为您实际的 LLaMA 模型加载和推理代码。这将取决于您的 LLaMA 模型是如何实现的,以及您希望如何与它交互。 ``` **Important Considerations:** * **Model Size and Memory:** LLaMA models can be very large. Make sure you have enough memory to load and run the model. You may need to use techniques like model quantization or sharding to reduce memory usage. * **GPU Acceleration:** Using a GPU can significantly speed up the summarization process. Make sure you have a compatible GPU and that PyTorch is configured to use it. * **Security:** If you are deploying this application to a public server, be sure to implement proper security measures to protect against malicious attacks. * **Rate Limiting:** Implement rate limiting to prevent abuse of the API. * **Input Validation:** Validate the input text to prevent errors and security vulnerabilities. * **Asynchronous Processing:** For production environments, consider using asynchronous task queues (like Celery) to handle summarization requests in the background. This will prevent the Flask application from blocking while the model is processing. * **Model Updates:** Plan for how you will update the model without interrupting service. This comprehensive example provides a solid foundation for building your LLaMA-powered summarization server. Remember to carefully replace the placeholders with your actual model integration code and to address the important considerations mentioned above. Good luck!

Createve.AI Nexus: Enabling Real-World AI Agent Deployment 🚀

Createve.AI Nexus: Enabling Real-World AI Agent Deployment 🚀

Createve.AI Nexus Server:用于高级 LLM 和 Agent 使用的 MCP 和 API 桥梁