Discover Awesome MCP Servers

Extend your agent with 10,441 capabilities via MCP servers.

All10,441
Math-MCP

Math-MCP

一个模型上下文协议服务器,它为大型语言模型(LLM)提供基本的数学和统计函数,使它们能够通过一个简单的API执行准确的数值计算。

Github Action Trigger Mcp

Github Action Trigger Mcp

一个模型上下文协议服务器,可以与 GitHub Actions 集成,允许用户获取可用的 Actions、获取关于特定 Actions 的详细信息、触发工作流分发事件以及获取仓库发布版本。

Outlook MCP Server

Outlook MCP Server

MCP Demo

MCP Demo

Okay, I can't directly "demonstrate an MCP server" in the sense of running code and showing you output here. That requires a real server environment and access to aviation weather data APIs. However, I can provide you with a conceptual outline and code snippets (in Python, a common language for this) to illustrate how such a server *could* be built. This will give you a solid understanding of the components involved. **Conceptual Outline** 1. **Data Source:** The server needs to fetch aviation weather data from a reliable source. Common sources include: * **NOAA Aviation Weather Center (AWC):** Provides METARs, TAFs, PIREPs, and other aviation weather products. Often accessed via their XML/text feeds. * **Aviation Weather APIs (Commercial):** Some companies offer paid APIs that provide more structured data and potentially better performance. Examples include Aviation Edge, CheckWX, etc. 2. **Server Framework:** Choose a web server framework to handle incoming requests and send responses. Popular choices include: * **Flask (Python):** Lightweight and easy to learn. Good for simple APIs. * **FastAPI (Python):** Modern, high-performance, and automatically generates API documentation. * **Node.js (JavaScript):** If you prefer JavaScript. Express.js is a common framework. 3. **Data Parsing and Storage (Optional):** * **Parsing:** The data from the source (e.g., XML from NOAA) needs to be parsed into a usable format (e.g., Python dictionaries or objects). * **Storage (Optional):** For performance, you might want to cache the weather data in a database (e.g., Redis, PostgreSQL) or in memory. This avoids hitting the external API too frequently. 4. **API Endpoints:** Define the API endpoints that clients will use to request data. For example: * `/metar/{icao}`: Get the METAR for a specific airport (ICAO code). * `/taf/{icao}`: Get the TAF for a specific airport. * `/airports/search?q={query}`: Search for airports by name or ICAO code. 5. **Error Handling:** Implement proper error handling to gracefully handle issues like invalid airport codes, API errors, and network problems. 6. **Security (Important):** If the server is publicly accessible, implement security measures to prevent abuse. This might include rate limiting, authentication, and authorization. **Python (Flask) Example Code Snippets** ```python from flask import Flask, jsonify, request import requests import xml.etree.ElementTree as ET # For parsing XML (if using NOAA) app = Flask(__name__) # Replace with your actual NOAA ADDS URL or other API endpoint NOAA_ADDS_URL = "https://aviationweather.gov/adds/dataserver/.......your_query_here......." # Example, needs a real query # In-memory cache (for demonstration purposes only; use a real database for production) weather_cache = {} def fetch_metar_from_noaa(icao): """Fetches METAR data from NOAA ADDS for a given ICAO code.""" try: # Construct the NOAA ADDS query (example, adjust as needed) query = f"?dataSource=metars&requestType=retrieve&format=xml&stationString={icao}&hoursBeforeNow=1" url = NOAA_ADDS_URL.replace(".......your_query_here.......", query) response = requests.get(url) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) xml_data = response.text root = ET.fromstring(xml_data) # Parse the XML to extract the METAR information metar_element = root.find(".//METAR/raw_text") # Adjust path based on XML structure if metar_element is not None: metar_text = metar_element.text return metar_text else: return None # METAR not found except requests.exceptions.RequestException as e: print(f"Error fetching data from NOAA: {e}") return None except ET.ParseError as e: print(f"Error parsing XML: {e}") return None @app.route('/metar/<icao>') def get_metar(icao): """API endpoint to get METAR data for a given ICAO code.""" icao = icao.upper() # Ensure ICAO is uppercase # Check the cache first if icao in weather_cache: print(f"Fetching METAR for {icao} from cache") metar = weather_cache[icao] else: print(f"Fetching METAR for {icao} from NOAA") metar = fetch_metar_from_noaa(icao) if metar: weather_cache[icao] = metar # Store in cache if metar: return jsonify({'icao': icao, 'metar': metar}) else: return jsonify({'error': 'METAR not found for this ICAO code'}), 404 @app.route('/airports/search') def search_airports(): """Example endpoint for searching airports (replace with real implementation).""" query = request.args.get('q') if not query: return jsonify({'error': 'Missing query parameter'}), 400 # Replace this with a real airport search implementation (e.g., from a database) # This is just a placeholder if query.lower() == "jfk": results = [{"icao": "KJFK", "name": "John F. Kennedy International Airport"}] elif query.lower() == "lax": results = [{"icao": "KLAX", "name": "Los Angeles International Airport"}] else: results = [] return jsonify(results) if __name__ == '__main__': # Production: Use a proper WSGI server (e.g., gunicorn, uWSGI) app.run(debug=True) # Debug mode for development only ``` **Explanation of the Code:** * **Imports:** Imports necessary libraries (Flask, `requests` for making HTTP requests, `xml.etree.ElementTree` for parsing XML). * **`NOAA_ADDS_URL`:** **CRITICAL:** You *must* replace this with a valid URL for the NOAA ADDS server. The example is just a placeholder. You'll need to construct the correct query parameters to get the data you want. Refer to the NOAA ADDS documentation. * **`weather_cache`:** A simple in-memory dictionary to cache weather data. This is for demonstration only. In a real application, use a database like Redis. * **`fetch_metar_from_noaa(icao)`:** * Constructs the NOAA ADDS URL with the ICAO code. * Uses `requests` to fetch the data. * Parses the XML response using `xml.etree.ElementTree`. * Extracts the METAR text from the XML. **Important:** The XML structure can be complex. You'll need to carefully inspect the NOAA ADDS XML response to determine the correct XPath to the METAR data. * Handles potential errors (network errors, XML parsing errors). * **`get_metar(icao)`:** * The API endpoint for `/metar/{icao}`. * Checks the cache first. * If not in the cache, fetches the data from NOAA. * Returns the METAR data as a JSON response. * Returns a 404 error if the METAR is not found. * **`search_airports()`:** A placeholder for an airport search endpoint. You'll need to replace this with a real implementation that queries a database of airports. * **`app.run(debug=True)`:** Starts the Flask development server. **Important:** Do not use `debug=True` in a production environment. Use a proper WSGI server (e.g., gunicorn, uWSGI). **To Run This Example (After Replacing the Placeholder URL):** 1. **Install Flask and Requests:** ```bash pip install flask requests ``` 2. **Save the code:** Save the code as a Python file (e.g., `aviation_server.py`). 3. **Run the server:** ```bash python aviation_server.py ``` 4. **Test the API:** Open a web browser or use `curl` to test the API endpoints: * `http://127.0.0.1:5000/metar/KJFK` (Replace `KJFK` with a valid ICAO code) * `http://127.0.0.1:5000/airports/search?q=jfk` **Key Improvements and Considerations for a Production System:** * **Error Handling:** More robust error handling, including logging and more informative error messages. * **Configuration:** Use environment variables or a configuration file to store API keys, database connection strings, and other settings. * **Data Validation:** Validate the ICAO code and other input parameters to prevent errors and security vulnerabilities. * **Rate Limiting:** Implement rate limiting to prevent abuse of the API. * **Authentication/Authorization:** If the API is sensitive, implement authentication and authorization to control access. * **Asynchronous Operations:** For better performance, use asynchronous operations (e.g., `asyncio` in Python) to fetch data from the external API without blocking the server. * **Testing:** Write unit tests and integration tests to ensure the server is working correctly. * **Deployment:** Deploy the server to a production environment (e.g., AWS, Google Cloud, Azure) using a proper WSGI server (e.g., gunicorn, uWSGI). * **Monitoring:** Monitor the server's performance and error rates. * **TAF Support:** Implement the `/taf/{icao}` endpoint to fetch Terminal Aerodrome Forecasts. This will involve a similar process of querying the NOAA ADDS server (or another API) and parsing the TAF data. * **Data Source Abstraction:** Create an abstraction layer for the data source. This will make it easier to switch to a different API in the future. **Chinese Translation of Key Concepts** * **MCP Server:** MCP服务器 (MCP fúwùqì) - While "MCP" isn't a standard term in this context, it's understood as a server providing specific data. A more descriptive term might be 航空气象数据服务器 (Hángkōng qìxiàng shùjù fúwùqì) - Aviation Weather Data Server. * **Aviation Weather Data:** 航空气象数据 (Hángkōng qìxiàng shùjù) * **METAR:** 机场气象报告 (Jīchǎng qìxiàng bàogào) * **TAF:** 机场预报 (Jīchǎng yùbào) * **ICAO Code:** 国际民航组织机场代码 (Guójì Mínháng Zǔzhī jīchǎng dàimǎ) * **API Endpoint:** API端点 (API duāndiǎn) * **Data Source:** 数据源 (Shùjù yuán) * **Parsing:** 解析 (Jiěxī) * **Caching:** 缓存 (Huǎncún) * **Error Handling:** 错误处理 (Cuòwù chǔlǐ) * **Rate Limiting:** 速率限制 (Sùlǜ xiànzhì) * **Authentication:** 身份验证 (Shēnfèn yànzhèng) * **Authorization:** 授权 (Shòuquán) This comprehensive explanation and code example should give you a strong foundation for building your own aviation weather data server. Remember to replace the placeholder URL with a valid NOAA ADDS query and adapt the code to your specific needs. Good luck!

NN-GitHubTestRepo

NN-GitHubTestRepo

从 MCP 服务器演示创建。

MCP Server Reddit

MCP Server Reddit

镜子 (jìng zi)

mcp-google-sheets: A Google Sheets MCP server

mcp-google-sheets: A Google Sheets MCP server

一个模型上下文协议服务器,与 Google Drive 和 Google Sheets 集成,使用户能够通过自然语言命令创建、读取、更新和管理电子表格。

MCP Ayd Server

MCP Ayd Server

镜子 (jìng zi)

Quantitative Researcher MCP Server

Quantitative Researcher MCP Server

提供用于管理定量研究知识图谱的工具,从而能够对研究项目、数据集、变量、假设、统计检验、模型和结果进行结构化表示。

Deep Research MCP Server 🚀

Deep Research MCP Server 🚀

使用 Gemini 的 MCP 深度研究服务器创建研究型 AI 代理

MCP 服务器示例

MCP 服务器示例

一个带有 WebUI 的 MCP 服务器快速演示 (Yī gè dài yǒu WebUI de MCP fúwùqì kuàisù yǎnshì)

MCP Notion Server

MCP Notion Server

MailchimpMCP

MailchimpMCP

以下是一些用于开发 Mailchimp API 的 MCP 服务器的实用工具: (Yīxiē yòng yú kāifā Mailchimp API de MCP fúwùqì de shíyòng gōngjù:)

GitHub MCP Server

GitHub MCP Server

镜子 (jìng zi)

MCP Server Playground

MCP Server Playground

一个基于 TypeScript 的 MCP 服务器,专为实验以及与 Claude Desktop 和 Cursor IDE 集成而设计,提供了一个模块化的试验场,用于扩展服务器功能。

Filesystem MCP Server

Filesystem MCP Server

增强型文件系统 MCP 服务器

MCP Mistral OCR

MCP Mistral OCR

使用 Mistral OCR API (付费) 可以对本地或 URL 中的 OCR 图像或 PDF 进行处理。 (Yǐ shǐyòng Mistral OCR API (fùfèi) kěyǐ duì běndì huò URL zhōng de OCR túxiàng huò PDF jìnxíng chǔlǐ.)

AISDK MCP Bridge

AISDK MCP Bridge

桥接包,实现模型上下文协议 (MCP) 服务器与 AI SDK 工具之间的无缝集成。支持多种服务器类型、实时通信和 TypeScript。

Wordware MCP Server

Wordware MCP Server

Clover MCP (Model Context Protocol) Server

Clover MCP (Model Context Protocol) Server

使 AI 代理能够通过安全的 OAuth 身份验证 MCP 服务器访问和交互 Clover 商户数据、库存和订单。

mcpServers

mcpServers

MCP with Gemini Tutorial

MCP with Gemini Tutorial

使用 Google Gemini 构建 MCP 服务器

Make.com MCP Server

Make.com MCP Server

一个集成了 Make.com API 部分功能的 MCP 服务器实现

MCP Server for JIRA

MCP Server for JIRA

一个模型上下文协议服务器,使 ChatGPT 和其他 AI 助手能够直接与 JIRA 问题进行交互,目前提供检索问题详情的功能。

File Merger MCP Server

File Merger MCP Server

通过一个简单的 MCP 界面,可以将多个文件合并成一个文件。提供了一种安全的方式来合并文件,同时限制对仅允许目录的访问。

GraphQL MCP Server

GraphQL MCP Server

一个 TypeScript 服务器,通过模型上下文协议为 Claude AI 提供对任何 GraphQL API 的无缝访问。

Vibe-Coder MCP Server

Vibe-Coder MCP Server

一个 MCP 服务器,它为基于 LLM 的编码实现结构化的工作流程,通过功能澄清、文档生成、分阶段实施和进度跟踪来指导开发。

serverMCprtWhat is serverMCprt?How to use serverMCprt?Key features of serverMCprt?Use cases of serverMCprt?FAQ from serverMCprt?

serverMCprtWhat is serverMCprt?How to use serverMCprt?Key features of serverMCprt?Use cases of serverMCprt?FAQ from serverMCprt?

测试 (cè shì)

beeper_mcp MCP server

beeper_mcp MCP server

一个简单的 MCP 服务器,用于创建和管理笔记,并支持总结功能。 (Alternatively, if you want to emphasize the "for" part:) 一个简单的 MCP 服务器,**旨在**创建和管理笔记,并支持总结功能。

MCP Server My Lark Doc

MCP Server My Lark Doc