Discover Awesome MCP Servers

Extend your agent with 15,823 capabilities via MCP servers.

All15,823
MCP-RoCQ

MCP-RoCQ

MCP-RoCQ 与 Coq 证明助手集成,通过 XML 协议通信实现自动依赖类型检查、归纳类型定义和属性证明。

Local
Python
ClickUp MCP Server

ClickUp MCP Server

这个服务器集成了人工智能助手与 ClickUp 工作区,通过安全的 OAuth2 认证流程,实现任务、团队、列表和看板的管理。

Local
TypeScript
Wordware MCP Server

Wordware MCP Server

一个模型上下文协议(Model Context Protocol)服务器实现,它将 Wordware 工作流作为工具直接集成到 Claude 对话中,支持诸如创始人研究、线索丰富、Notion 集成以及使用 Google 搜索解决任务等功能。

Local
TypeScript
ComfyUI MCP Server

ComfyUI MCP Server

一个用于连接本地 ComfyUI 实例的服务器,该服务器支持使用自定义 URI 方案存储和总结笔记。

Local
Python
docker-mcp

docker-mcp

一个强大的模型上下文协议(MCP)服务器,用于 Docker 操作,通过 Claude AI 实现无缝的容器和 Compose 堆栈管理。

Local
Python
Ancestry MCP

Ancestry MCP

允许人工智能读取 .ged 文件和基因数据。

Local
Python
Email Processing MCP Server

Email Processing MCP Server

This is a complex task involving several steps and technologies. Here's a breakdown of the process and a conceptual outline of how you might implement it, along with considerations for each step: **1. Outlook Email Extraction and Date Filtering:** * **Technology:** Python with libraries like `win32com.client` (for Windows) or `imaplib` (cross-platform, but requires IMAP access enabled in Outlook). * **Process:** 1. **Connect to Outlook:** * **`win32com.client` (Windows):** This is the most direct way to access Outlook on Windows. ```python import win32com.client outlook = win32com.client.Dispatch("Outlook.Application").GetNamespace("MAPI") inbox = outlook.GetDefaultFolder(6) # 6 represents the Inbox messages = inbox.Items ``` * **`imaplib` (Cross-Platform):** Requires IMAP to be enabled in your Outlook account settings. This is more complex to set up but works on macOS and Linux. ```python import imaplib import email # Replace with your Outlook IMAP server and credentials imap_server = "outlook.office365.com" imap_user = "your_email@outlook.com" imap_password = "your_password" mail = imaplib.IMAP4_SSL(imap_server) mail.login(imap_user, imap_password) mail.select("inbox") result, data = mail.search(None, "ALL") # Or use specific search criteria for num in data[0].split(): result, data = mail.fetch(num, "(RFC822)") raw_email = data[0][1] email_message = email.message_from_bytes(raw_email) # Process email_message mail.close() mail.logout() ``` 2. **Date Filtering:** Iterate through the emails and check their sent/received dates. * **`win32com.client`:** ```python import datetime start_date = datetime.datetime(2023, 1, 1) # Example start date end_date = datetime.datetime(2023, 12, 31) # Example end date for message in messages: try: sent_date = message.SentOn.replace(tzinfo=None) # Remove timezone info for comparison if start_date <= sent_date <= end_date: # Process the email print(f"Subject: {message.Subject}, Sent: {sent_date}") except Exception as e: print(f"Error processing email: {e}") ``` * **`imaplib`:** You can use IMAP search criteria for date filtering *before* fetching the emails, which is more efficient. ```python from datetime import date, timedelta today = date.today() yesterday = today - timedelta(days=1) date_str = yesterday.strftime("%d-%b-%Y") # Format required by IMAP result, data = mail.search(None, f'SINCE "{date_str}"') # Search for emails since yesterday ``` 3. **Email Data Extraction:** Extract relevant information from each email: * Subject * Sender * Recipient(s) * Sent/Received Date * Body (plain text and/or HTML) * Attachments (optional) **2. SQLite Database Storage:** * **Technology:** Python's `sqlite3` library. * **Process:** 1. **Connect to SQLite:** ```python import sqlite3 conn = sqlite3.connect('emails.db') cursor = conn.cursor() ``` 2. **Create a Table:** ```python cursor.execute(''' CREATE TABLE IF NOT EXISTS emails ( id INTEGER PRIMARY KEY AUTOINCREMENT, subject TEXT, sender TEXT, recipient TEXT, sent_date DATETIME, body TEXT ) ''') conn.commit() ``` 3. **Insert Email Data:** ```python def insert_email(subject, sender, recipient, sent_date, body): cursor.execute(''' INSERT INTO emails (subject, sender, recipient, sent_date, body) VALUES (?, ?, ?, ?, ?) ''', (subject, sender, recipient, sent_date, body)) conn.commit() # Example usage: insert_email(message.Subject, message.SenderEmailAddress, message.To, message.SentOn, message.Body) ``` 4. **Close the Connection:** ```python conn.close() ``` **3. Vector Embedding Generation:** * **Technology:** A suitable embedding model (e.g., Sentence Transformers, OpenAI's embeddings API, Hugging Face Transformers) and a library to use it. * **Process:** 1. **Choose an Embedding Model:** * **Sentence Transformers:** Good for general-purpose semantic similarity. Easy to use and can run locally. ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('all-mpnet-base-v2') # Choose a model ``` * **OpenAI Embeddings API:** High-quality embeddings, but requires an OpenAI API key and incurs costs. ```python import openai openai.api_key = "YOUR_OPENAI_API_KEY" def get_embedding(text, model="text-embedding-ada-002"): text = text.replace("\n", " ") return openai.Embedding.create(input = [text], model=model)['data'][0]['embedding'] ``` * **Hugging Face Transformers:** Offers a wide range of models, but can be more complex to set up. 2. **Generate Embeddings:** Create embeddings for the email body (or subject + body). ```python # Using Sentence Transformers email_body = message.Body # Or message.HTMLBody, but clean it first embedding = model.encode(email_body) # Using OpenAI email_body = message.Body embedding = get_embedding(email_body) ``` **4. MongoDB Storage with Vector Search:** * **Technology:** MongoDB with Atlas Vector Search. * **Process:** 1. **Connect to MongoDB:** ```python from pymongo import MongoClient # Replace with your MongoDB connection string client = MongoClient("mongodb+srv://<username>:<password>@<cluster>.mongodb.net/?retryWrites=true&w=majority") db = client["email_database"] collection = db["emails"] ``` 2. **Create a Vector Search Index (if it doesn't exist):** This is crucial for efficient vector search. You'll need to do this in the MongoDB Atlas UI or using the MongoDB shell. The index definition will depend on the embedding dimension of your chosen model. Example: ```javascript // MongoDB Shell db.emails.createIndex( { embedding: "vectorSearch", "indexConfig": { "dimensions": 768, // Replace with the dimension of your embedding model "similarity": "cosine", // Or "euclidean", "dotProduct" "vectorOptions": { "dataType": "float16", // Or "float32" "normalize": true } } }, { "name": "vectorSearchIndex" } ) ``` 3. **Store Email Data and Embeddings:** ```python def insert_email_mongo(subject, sender, recipient, sent_date, body, embedding): email_document = { "subject": subject, "sender": sender, "recipient": recipient, "sent_date": sent_date, "body": body, "embedding": embedding.tolist() # Convert NumPy array to list for MongoDB } collection.insert_one(email_document) # Example usage: insert_email_mongo(message.Subject, message.SenderEmailAddress, message.To, message.SentOn, message.Body, embedding) ``` **5. Semantic Search:** * **Process:** 1. **Get the Search Query:** The user enters a search query. 2. **Generate Embedding for the Query:** Use the *same* embedding model you used for the emails to generate an embedding for the search query. 3. **Perform Vector Search in MongoDB:** Use the `$vectorSearch` aggregation pipeline stage. ```python def search_emails(query, limit=10): query_embedding = model.encode(query).tolist() # Or get_embedding(query) if using OpenAI pipeline = [ { "$vectorSearch": { "index": "vectorSearchIndex", # The name of your vector search index "path": "embedding", "queryVector": query_embedding, "numCandidates": 100, # Adjust as needed "limit": limit } }, { "$project": { "_id": 0, "subject": 1, "body": 1, "score": { "$meta": "vectorSearchScore" } } } ] results = list(collection.aggregate(pipeline)) return results # Example usage: search_results = search_emails("meeting about project updates") for result in search_results: print(f"Subject: {result['subject']}, Score: {result['score']}") print(f"Body: {result['body'][:200]}...") # Print first 200 characters of the body ``` **Code Example (Illustrative - Requires Adaptation):** ```python import win32com.client import sqlite3 from sentence_transformers import SentenceTransformer from pymongo import MongoClient import datetime # --- Configuration --- SQLITE_DB_NAME = 'emails.db' MONGODB_CONNECTION_STRING = "mongodb+srv://<username>:<password>@<cluster>.mongodb.net/?retryWrites=true&w=majority" MONGODB_DATABASE_NAME = "email_database" MONGODB_COLLECTION_NAME = "emails" EMBEDDING_MODEL_NAME = 'all-mpnet-base-v2' # Or 'text-embedding-ada-002' if using OpenAI # --- Initialize Components --- outlook = win32com.client.Dispatch("Outlook.Application").GetNamespace("MAPI") inbox = outlook.GetDefaultFolder(6) messages = inbox.Items sqlite_conn = sqlite3.connect(SQLITE_DB_NAME) sqlite_cursor = sqlite_conn.cursor() model = SentenceTransformer(EMBEDDING_MODEL_NAME) # Or initialize OpenAI mongo_client = MongoClient(MONGODB_CONNECTION_STRING) mongo_db = mongo_client[MONGODB_DATABASE_NAME] mongo_collection = mongo_db[MONGODB_COLLECTION_NAME] # --- Database Setup --- sqlite_cursor.execute(''' CREATE TABLE IF NOT EXISTS emails ( id INTEGER PRIMARY KEY AUTOINCREMENT, subject TEXT, sender TEXT, recipient TEXT, sent_date DATETIME, body TEXT ) ''') sqlite_conn.commit() # --- Email Processing --- start_date = datetime.datetime(2023, 1, 1) end_date = datetime.datetime(2023, 12, 31) for message in messages: try: sent_date = message.SentOn.replace(tzinfo=None) if start_date <= sent_date <= end_date: subject = message.Subject sender = message.SenderEmailAddress recipient = message.To body = message.Body # 1. Store in SQLite sqlite_cursor.execute(''' INSERT INTO emails (subject, sender, recipient, sent_date, body) VALUES (?, ?, ?, ?, ?) ''', (subject, sender, recipient, sent_date, body)) sqlite_conn.commit() # 2. Generate Embedding embedding = model.encode(body) # Or use OpenAI # 3. Store in MongoDB email_document = { "subject": subject, "sender": sender, "recipient": recipient, "sent_date": sent_date, "body": body, "embedding": embedding.tolist() } mongo_collection.insert_one(email_document) print(f"Processed email: {subject}") except Exception as e: print(f"Error processing email: {e}") # --- Cleanup --- sqlite_conn.close() mongo_client.close() print("Email processing complete.") ``` **Key Considerations and Improvements:** * **Error Handling:** Robust error handling is crucial, especially when dealing with external APIs and data sources. Use `try...except` blocks extensively. * **Rate Limiting:** Be mindful of rate limits for the OpenAI API and other services. Implement delays or batch processing to avoid exceeding limits. * **Authentication:** Securely store and manage API keys and database credentials. Avoid hardcoding them directly in your script. Use environment variables or a configuration file. * **Data Cleaning:** Clean the email body before generating embeddings. Remove HTML tags, special characters, and irrelevant content. Consider using libraries like `BeautifulSoup` for HTML parsing. * **Scalability:** For large email datasets, consider using batch processing and asynchronous tasks to improve performance. Libraries like `Celery` or `Dask` can help. * **Incremental Updates:** Implement a mechanism to periodically check for new emails and update the databases and embeddings. You could use a scheduled task or a background process. * **Vector Search Index Optimization:** Experiment with different vector search index configurations (e.g., `numCandidates`, `similarity metric`) to optimize search performance. * **User Interface:** Create a user interface (e.g., using Flask, Django, or Streamlit) to allow users to enter search queries and view the results. * **Security:** If you're handling sensitive email data, implement appropriate security measures to protect the data at rest and in transit. * **Time Zones:** Pay close attention to time zones when filtering emails by date. Ensure that all dates are in the same time zone before comparing them. * **Attachment Handling:** If you need to process attachments, you'll need to extract them from the emails and store them separately. You could also generate embeddings for the attachment content. * **IMAP vs. Exchange Web Services (EWS):** For more advanced Outlook integration, consider using Exchange Web Services (EWS) instead of IMAP. EWS provides more features and better performance, but it's also more complex to set up. There are Python libraries like `exchangelib` that can help. This comprehensive outline should give you a solid foundation for building your email processing and semantic search application. Remember to adapt the code examples to your specific needs and environment. Good luck! **Simplified Chinese Translation of the Key Concepts:** Here's a translation of the key concepts into Simplified Chinese: * **Outlook Email Extraction:** Outlook 邮件提取 (Outlook yóujiàn tíqǔ) * **Date Filtering:** 日期过滤 (rìqí guòlǜ) * **SQLite Database:** SQLite 数据库 (SQLite shùjùkù) * **Vector Embeddings:** 向量嵌入 (xiàngliàng qiànrù) * **Semantic Search:** 语义搜索 (yǔyì sōusuǒ) * **MongoDB:** MongoDB * **Atlas Vector Search:** Atlas 向量搜索 (Atlas xiàngliàng sōusuǒ) * **Sentence Transformers:** 句子转换器 (jùzi zhuǎnhuànqì) * **OpenAI Embeddings API:** OpenAI 嵌入 API (OpenAI qiànrù API) * **Hugging Face Transformers:** Hugging Face 转换器 (Hugging Face zhuǎnhuànqì) * **Email Body:** 邮件正文 (yóujiàn zhèngwén) * **Search Query:** 搜索查询 (sōusuǒ cháxún) * **Aggregation Pipeline:** 聚合管道 (jùhé guǎndào) * **Index:** 索引 (suǒyǐn) * **Connection String:** 连接字符串 (liánjiē zìfúchuàn) * **Rate Limiting:** 速率限制 (sùlǜ xiànzhì) * **Data Cleaning:** 数据清洗 (shùjù qīngxǐ) * **Scalability:** 可扩展性 (kě kuòzhǎn xìng) * **Incremental Updates:** 增量更新 (zēngliàng gēngxīn) * **User Interface:** 用户界面 (yònghù jièmiàn) * **Security:** 安全性 (ānquán xìng) * **Time Zones:** 时区 (shíqū) * **Attachment Handling:** 附件处理 (fùjiàn chǔlǐ) * **Exchange Web Services (EWS):** Exchange Web 服务 (EWS)

Local
Python
SystemPrompt MCP Server

SystemPrompt MCP Server

这个基于 TypeScript 的服务器实现了一个简单的笔记系统,允许用户创建和管理文本笔记并生成摘要,展示了核心 MCP 概念。

Local
TypeScript
mcp-server-airbnb

mcp-server-airbnb

搜索爱彼迎房源并获取特定房产的详细信息。无需 API 密钥,即可轻松规划您的下一次旅行,并以结构化数据呈现,同时遵守爱彼迎的准则。

Local
JavaScript
Windows CLI MCP Server

Windows CLI MCP Server

一个模型上下文协议(Model Context Protocol,MCP)服务器,提供对 Windows 系统的安全命令行访问。它允许像 Claude Desktop 这样的 MCP 客户端安全地在 PowerShell、CMD 和 Git Bash shell 中执行命令,并具有可配置的安全控制。

Local
JavaScript
SourceSage MCP

SourceSage MCP

通过在 GitHub 上创建一个帐户,为 Sunwood-ai-labs/source-sage-mcp-server 的开发做出贡献。

Local
TypeScript
mcp-gsuite

mcp-gsuite

MCP 服务器,用于与 Google 产品交互。

Local
Python
Gmail MCP Server

Gmail MCP Server

一个 MCP 服务器,它与 Gmail 集成,从而可以通过诸如 send-email、trash-email、get-unread-emails 和 read-email 等工具来发送、读取和管理电子邮件。 (Alternatively, a slightly more formal translation:) 一个与 Gmail 集成的 MCP 服务器,能够通过诸如 send-email、trash-email、get-unread-emails 和 read-email 等工具实现电子邮件的发送、读取和管理。

Local
Python
Voyp MCP Server

Voyp MCP Server

Voyp MCP 服务器使 AI 系统能够与 VOYP 的呼叫功能集成,从而通过模型上下文协议实现安全的电话操作,例如拨打电话、安排预约和跟踪呼叫状态。

Local
JavaScript
Mentor MCP Server

Mentor MCP Server

为LLM智能代理提供AI驱动的指导,用于代码审查、设计评论、写作反馈和头脑风暴,使用Deepseek API,从而在各种开发和战略规划任务中实现增强的输出。

Local
TypeScript
Say MCP Server

Say MCP Server

在 macOS 上使用 `say` 命令启用文本转语音功能,从而可以广泛控制语音参数,例如声音、语速、音量和音调,以获得可定制的听觉体验。

Local
JavaScript
Things MCP Server

Things MCP Server

通过 Claude Desktop 实现与 Things 应用的交互,允许使用自然语言命令来创建任务、分析项目和管理优先级。

Local
Python
MCP-Logic

MCP-Logic

MCP-Logic 是一个服务器,它为人工智能系统提供自动推理能力,通过简洁的 MCP 接口,使用 Prover9/Mace4 实现逻辑定理证明和模型验证。

Local
Python
Whimsical MCP Server

Whimsical MCP Server

通过模型上下文协议,可以使用来自 Claude 等 AI 模型生成的 Mermaid 标记,以编程方式创建 Whimsical 图表。

Local
TypeScript
Markdownify MCP Server - UTF-8 Enhanced

Markdownify MCP Server - UTF-8 Enhanced

一个文档转换服务器,可以将各种文件格式(PDF、文档、图像、音频、网页内容)转换为 Markdown,并改进了对多语言和 UTF-8 的支持。

Local
TypeScript
Personal MCP Server

Personal MCP Server

一个模型上下文协议服务器,用于跟踪个人健康和福祉,提供锻炼记录、营养管理和每日日记工具,并集成人工智能辅助分析。

Local
Python
MCP Server Modal

MCP Server Modal

一个 MCP 服务器,允许用户直接从 Claude 将 Python 脚本部署到 Modal,并提供已部署应用程序的链接,以便与他人分享。

Local
Python
Browser Automation MCP Server

Browser Automation MCP Server

GitHub 是人们构建软件的地方。超过 1.5 亿人使用 GitHub 来发现、fork 和贡献超过 4.2 亿个项目。

Local
JavaScript
k8s-interactive-mcp

k8s-interactive-mcp

一个 MCP 服务器,可以使用给定的 kubeconfig 路径运行 Kubernetes 命令,并提供命令的解释。 (Or, a slightly more formal translation:) 一个 MCP 服务器,它能够使用指定的 kubeconfig 路径执行 Kubernetes 命令,并提供对这些命令的解释。

Local
JavaScript
Ollama MCP Server

Ollama MCP Server

实现 Ollama 本地 LLM 模型与 MCP 兼容应用程序之间的无缝集成,支持模型管理和聊天互动。

Local
TypeScript
MCP Puppeteer Linux Server

MCP Puppeteer Linux Server

在 Linux 显示服务器上为 LLM 启用浏览器自动化,支持在真实浏览器中进行 Web 交互、屏幕截图和 JavaScript 执行。

Local
JavaScript
MCP SAP GUI Server

MCP SAP GUI Server

使用模型上下文协议自动执行与 SAP GUI 的交互,从而可以通过点击、键入、滚动和事务管理等工具精确控制 SAP 事务。

Local
Python
mcp-wcgw

mcp-wcgw

在 Claude 桌面应用上的 Shell 和编码代理。通过在 GitHub 上创建一个帐户来为 rusiaaman/wcgw 的开发做出贡献。

Local
Python
MCP Client Configuration Server

MCP Client Configuration Server

一个工具,用于管理和同步不同 AI 助手客户端(Cline、Roo Code、WindSurf、Claude)的 MCP 服务器配置,并自动化从客户端配置文件中检索、列出、添加和删除服务器配置的过程。 Alternatively, a more concise translation: 用于管理和同步不同 AI 助手客户端(Cline、Roo Code、WindSurf、Claude)MCP 服务器配置的工具,可自动执行从客户端配置文件中检索、列出、添加和删除服务器配置的操作。

Local
JavaScript
Filesystem MCP Server

Filesystem MCP Server

实现用于文件系统操作的模型上下文协议的 Node.js 服务器,允许 Claude 在指定位置读取、写入和操作文件和目录。

Local
JavaScript