Discover Awesome MCP Servers
Extend your agent with 20,526 capabilities via MCP servers.
- All20,526
- Developer Tools3,867
- Search1,714
- Research & Data1,557
- AI Integration Systems229
- Cloud Platforms219
- Data & App Analysis181
- Database Interaction177
- Remote Shell Execution165
- Browser Automation147
- Databases145
- Communication137
- AI Content Generation127
- OS Automation120
- Programming Docs Access109
- Content Fetching108
- Note Taking97
- File Systems96
- Version Control93
- Finance91
- Knowledge & Memory90
- Monitoring79
- Security71
- Image & Video Processing69
- Digital Note Management66
- AI Memory Systems62
- Advanced AI Reasoning59
- Git Management Tools58
- Cloud Storage51
- Entertainment & Media43
- Virtualization42
- Location Services35
- Web Automation & Stealth32
- Media Content Processing32
- Calendar Management26
- Ecommerce & Retail18
- Speech Processing18
- Customer Data Platforms16
- Travel & Transportation14
- Education & Learning Tools13
- Home Automation & IoT13
- Web Search Integration12
- Health & Wellness10
- Customer Support10
- Marketing9
- Games & Gamification8
- Google Cloud Integrations7
- Art & Culture4
- Language Translation3
- Legal & Compliance2
MCP Vaultwarden Server
Enables AI agents and automation scripts to securely interact with self-hosted Vaultwarden instances through the Bitwarden CLI, automatically managing vault sessions and providing tools to read, create, update, and delete secrets programmatically.
Agent MCP
A Multi-Agent Collaboration Protocol server that enables coordinated AI collaboration through task management, context sharing, and agent interaction visualization.
MCP Weather Server
A containerized server that provides weather tools for AI assistants, allowing them to access US weather alerts and forecasts through the National Weather Service API.
ChatRPG
A lightweight ChatGPT app that converts your LLM into a Dungeon Master!
FastMCP Demo Server
A production-ready MCP server that provides hackathon resources and reusable starter prompts. Built with FastMCP framework and includes comprehensive deployment options for development and production environments.
Outlook MCP Server
Enables interaction with Outlook email through Microsoft Graph API. Supports email management operations like reading, searching, marking as read/unread, and deleting messages through natural language.
Fetch-Save MCP Server
A Model Context Protocol server that enables LLMs to retrieve web content and save it to local files for permanent storage and later access.
TypeScript MCP Server Boilerplate
A boilerplate project for quickly developing Model Context Protocol (MCP) servers using TypeScript SDK, with examples of tools (calculator, greeting) and resources (server info).
WorkItems DevOps MCP Server
Enables LLMs and AI applications to interact with Azure DevOps Work Items, supporting queries, filtering, status updates, date management, effort tracking, descriptions, and comments through natural language.
X MCP Server
Enables users to interact with X (Twitter) through the X API. Supports posting tweets, retrieving user timelines, searching tweets, and replying to tweets with comprehensive error handling.
LINE Bot MCP Server
Model Context Protocol server implementation that integrates the LINE Messaging API to connect AI agents with LINE Official Accounts, enabling agents to send messages to users.
Genesis MCP Server
A template for deploying remote MCP servers on Cloudflare Workers without authentication. Provides a foundation for building custom MCP tools that can be accessed from Claude Desktop or the Cloudflare AI Playground.
Display & Video 360 API MCP Server
An MCP server that enables interaction with Google's Display & Video 360 advertising platform API, allowing management of digital advertising campaigns through natural language commands.
Maiga API MCP Server
Provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token technicals, social sentiment tracking, and KOL insights. It enables AI assistants to retrieve market reports, trending token data, and detailed on-chain information.
MCP MySQL Server
Enables interaction with MySQL databases (including AWS RDS and cloud instances) through natural language. Supports database connections, query execution, schema inspection, and comprehensive database management operations.
Meraki Magic MCP
A Python-based MCP server that enables querying Cisco's Meraki Dashboard API to discover, monitor, and manage Meraki environments.
Cursor Rust Tools
Um servidor MCP para permitir que o LLM no Cursor acesse o Rust Analyzer, a documentação de Crate e os comandos Cargo.
MCP Server for MySQL
Provides access to MySQL databases with fine-grained access control, supporting multiple databases simultaneously with configurable access modes (readonly, readwrite, full) and table-level permissions using whitelists, blacklists, wildcards, and regex patterns.
Markdown MCP Server
An MCP (Model Context Protocol) server for efficiently managing Markdown documents in Cursor AI IDE, supporting CRUD operations, search, and metadata management.
MCP with Langchain Sample Setup
Okay, here's a sample setup for an MCP (Modular Component Protocol) server and client, designed to be compatible with LangChain. This example focuses on a simple "summarization" task, but you can adapt it to other LangChain functionalities. **Important Considerations:** * **MCP (Modular Component Protocol):** MCP isn't a widely standardized protocol. This example uses a simplified, custom implementation based on JSON over HTTP for demonstration purposes. In a real-world scenario, you might consider more robust solutions like gRPC, Thrift, or even well-defined REST APIs. * **LangChain Integration:** The key is to use LangChain components (e.g., LLMs, chains, document loaders) *within* the MCP server to process requests. The client sends data, the server uses LangChain to process it, and the server returns the result. * **Error Handling:** This is a simplified example. Robust error handling (try-except blocks, logging, proper HTTP status codes) is crucial in a production environment. * **Security:** This example lacks security measures (authentication, authorization). Implement appropriate security based on your needs. * **Asynchronous Operations:** For more complex tasks, consider using asynchronous operations (e.g., `asyncio` in Python) to improve performance and prevent blocking. **Python Code (Example):** **1. MCP Server (using Flask):** ```python from flask import Flask, request, jsonify from langchain.llms import OpenAI from langchain.chains.summarize import load_summarize_chain from langchain.document_loaders import TextLoader # Or other loaders from langchain.text_splitter import CharacterTextSplitter import os # Set your OpenAI API key (or use environment variables) os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY" # Replace with your actual key app = Flask(__name__) @app.route('/summarize', methods=['POST']) def summarize_text(): try: data = request.get_json() text = data.get('text') if not text: return jsonify({'error': 'Missing "text" parameter'}), 400 # LangChain components llm = OpenAI(temperature=0) # Adjust temperature as needed summarize_chain = load_summarize_chain(llm, chain_type="map_reduce") # or "stuff", "refine" # Prepare the document (using a dummy TextLoader for demonstration) # In a real scenario, you might load from a file, database, etc. # For large texts, split into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(text) # Create LangChain documents from the text chunks from langchain.docstore.document import Document docs = [Document(page_content=t) for t in texts] # Run the summarization chain summary = summarize_chain.run(docs) return jsonify({'summary': summary}) except Exception as e: print(f"Error: {e}") # Log the error return jsonify({'error': str(e)}), 500 # Return error with status code if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=5000) # Make accessible on network ``` **2. MCP Client (using `requests`):** ```python import requests import json def summarize_with_mcp(text, server_url="http://localhost:5000/summarize"): """ Sends text to the MCP server for summarization. Args: text: The text to summarize. server_url: The URL of the MCP server's summarize endpoint. Returns: The summary from the server, or None if there was an error. """ try: payload = {'text': text} headers = {'Content-Type': 'application/json'} response = requests.post(server_url, data=json.dumps(payload), headers=headers) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) data = response.json() return data.get('summary') except requests.exceptions.RequestException as e: print(f"Error connecting to server: {e}") return None except json.JSONDecodeError as e: print(f"Error decoding JSON response: {e}") return None except Exception as e: print(f"An unexpected error occurred: {e}") return None if __name__ == '__main__': sample_text = """ This is a long piece of text that needs to be summarized. It contains important information about LangChain and MCP. LangChain is a powerful framework for building applications using large language models. MCP, in this context, is a simple protocol for communication between a client and a server. The server uses LangChain to process requests from the client. This example demonstrates a basic summarization task. More complex tasks can be implemented using different LangChain components and chains. Error handling and security are important considerations for production deployments. """ summary = summarize_with_mcp(sample_text) if summary: print("Summary:", summary) else: print("Failed to get summary.") ``` **Explanation:** * **Server (Flask):** * Uses Flask to create a simple HTTP server. * The `/summarize` endpoint receives POST requests with a JSON payload containing the `text` to summarize. * It initializes LangChain components: `OpenAI` (the LLM) and `load_summarize_chain` (the summarization chain). You'll need an OpenAI API key. * It loads the text into a LangChain `Document`. For larger texts, it splits the text into chunks using `CharacterTextSplitter`. * It runs the summarization chain and returns the summary in a JSON response. * Includes basic error handling. * **Client:** * Uses the `requests` library to send a POST request to the server's `/summarize` endpoint. * It packages the text to be summarized in a JSON payload. * It handles potential errors during the request (e.g., connection errors, bad responses). * It prints the summary received from the server. **How to Run:** 1. **Install Dependencies:** ```bash pip install flask langchain openai requests tiktoken ``` 2. **Set OpenAI API Key:** Replace `"YOUR_OPENAI_API_KEY"` in the server code with your actual OpenAI API key. Consider using environment variables for security. 3. **Run the Server:** ```bash python your_server_file.py # e.g., python mcp_server.py ``` 4. **Run the Client:** ```bash python your_client_file.py # e.g., python mcp_client.py ``` **Key Adaptations for Different LangChain Tasks:** * **Different Chains:** Instead of `load_summarize_chain`, use other LangChain chains (e.g., `LLMChain`, `ConversationalRetrievalChain`) based on the task you want to perform. * **Different LLMs:** Use other LLMs besides `OpenAI` (e.g., `HuggingFaceHub`, `Cohere`). You'll need to install the appropriate LangChain integration and configure the LLM. * **Data Loading:** Use different LangChain document loaders (e.g., `WebBaseLoader`, `CSVLoader`, `PDFMinerLoader`) to load data from various sources. * **Input/Output:** Adjust the input and output data formats in the server and client to match the requirements of your task. For example, you might send a question and receive an answer, or send a list of documents and receive a ranked list of relevant documents. * **Prompt Engineering:** Carefully design the prompts used in your LangChain chains to achieve the desired results. **Example in Portuguese (Translation of the Explanation):** Aqui está uma configuração de exemplo para um servidor e cliente MCP (Modular Component Protocol), projetada para ser compatível com LangChain. Este exemplo se concentra em uma tarefa simples de "resumo", mas você pode adaptá-lo para outras funcionalidades do LangChain. **Considerações Importantes:** * **MCP (Modular Component Protocol):** MCP não é um protocolo amplamente padronizado. Este exemplo usa uma implementação personalizada simplificada baseada em JSON sobre HTTP para fins de demonstração. Em um cenário do mundo real, você pode considerar soluções mais robustas como gRPC, Thrift ou até mesmo APIs REST bem definidas. * **Integração com LangChain:** A chave é usar componentes LangChain (por exemplo, LLMs, chains, carregadores de documentos) *dentro* do servidor MCP para processar solicitações. O cliente envia dados, o servidor usa LangChain para processá-los e o servidor retorna o resultado. * **Tratamento de Erros:** Este é um exemplo simplificado. O tratamento robusto de erros (blocos try-except, registro, códigos de status HTTP adequados) é crucial em um ambiente de produção. * **Segurança:** Este exemplo carece de medidas de segurança (autenticação, autorização). Implemente a segurança apropriada com base em suas necessidades. * **Operações Assíncronas:** Para tarefas mais complexas, considere usar operações assíncronas (por exemplo, `asyncio` em Python) para melhorar o desempenho e evitar bloqueios. **Código Python (Exemplo):** (O código Python permaneceria o mesmo, pois é código e não precisa ser traduzido. Apenas a explicação é traduzida.) **Explicação:** * **Servidor (Flask):** * Usa Flask para criar um servidor HTTP simples. * O endpoint `/summarize` recebe solicitações POST com um payload JSON contendo o `text` a ser resumido. * Ele inicializa os componentes LangChain: `OpenAI` (o LLM) e `load_summarize_chain` (a chain de resumo). Você precisará de uma chave de API OpenAI. * Ele carrega o texto em um `Document` LangChain. Para textos maiores, ele divide o texto em partes usando `CharacterTextSplitter`. * Ele executa a chain de resumo e retorna o resumo em uma resposta JSON. * Inclui tratamento de erros básico. * **Cliente:** * Usa a biblioteca `requests` para enviar uma solicitação POST para o endpoint `/summarize` do servidor. * Ele empacota o texto a ser resumido em um payload JSON. * Ele lida com possíveis erros durante a solicitação (por exemplo, erros de conexão, respostas ruins). * Ele imprime o resumo recebido do servidor. **Como Executar:** (As instruções de execução permanecem as mesmas, pois são comandos e não precisam ser traduzidas.) **Principais Adaptações para Diferentes Tarefas LangChain:** * **Chains Diferentes:** Em vez de `load_summarize_chain`, use outras chains LangChain (por exemplo, `LLMChain`, `ConversationalRetrievalChain`) com base na tarefa que você deseja executar. * **LLMs Diferentes:** Use outros LLMs além de `OpenAI` (por exemplo, `HuggingFaceHub`, `Cohere`). Você precisará instalar a integração LangChain apropriada e configurar o LLM. * **Carregamento de Dados:** Use diferentes carregadores de documentos LangChain (por exemplo, `WebBaseLoader`, `CSVLoader`, `PDFMinerLoader`) para carregar dados de várias fontes. * **Entrada/Saída:** Ajuste os formatos de dados de entrada e saída no servidor e no cliente para corresponder aos requisitos de sua tarefa. Por exemplo, você pode enviar uma pergunta e receber uma resposta, ou enviar uma lista de documentos e receber uma lista classificada de documentos relevantes. * **Engenharia de Prompt:** Projete cuidadosamente os prompts usados em suas chains LangChain para obter os resultados desejados. This provides a basic framework. Remember to adapt it to your specific use case and add proper error handling, security, and performance optimizations. Good luck!
Hurricane Tracker MCP Server
Provides real-time hurricane tracking, 5-day forecast cones, location-based alerts, and historical storm data from NOAA/NHC through MCP tools for AI assistants.
Another Planka MCP
An MCP server that enables AI assistants to interact with self-hosted Planka boards through the Planka REST API. It allows users to list, search, create, and update projects, boards, and cards using natural language.
TripNow (航班管家)
Provides real-time flight and train ticket queries, live status tracking, and a professional knowledge base for air and rail travel. It enables users to monitor departures, check ticketing policies, and manage travel information through a unified interface.
Sequential Questioning MCP Server
A specialized server that enables LLMs to gather specific information through sequential questioning, implementing the MCP standard for seamless integration with LLM clients.
arc-mcp
An MCP server for the Arc browser that enables programmatic management of spaces and tabs. It supports actions like listing, creating, and deleting spaces and tabs, as well as focusing spaces and opening URLs via AppleScript.
MCP Server for Veryfi Document Processing
Servidor de protocolo de contexto de modelo com acesso à API Veryfi
MCP Finder Server
Remote MCP Server on Cloudflare
Ticket Tailor API Integration
mcp_sdk_petstore_api_44
A standalone MCP server generated from an OpenAPI specification that exposes Petstore API endpoints as tools for AI assistants. It utilizes SSE transport to enable models to interact with pet store management functionalities through natural language.