Maiga API MCP Server

Maiga API MCP Server

Provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token technicals, social sentiment tracking, and KOL insights. It enables AI assistants to retrieve market reports, trending token data, and detailed on-chain information.

Category
Visit Server

README

Maiga API MCP Server

A Model Context Protocol (MCP) server that provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token analysis, market reports, KOL insights, and trending token discovery.

Overview

This MCP server enables AI assistants and applications to interact with Maiga's cryptocurrency analysis platform through a standardized protocol. It provides access to technical and fundamental analysis, social sentiment analysis, token holder information, market reports, KOL (Key Opinion Leader) analytics, and trending token discovery.

Features

Available Tools

  • Token Analysis (maiga_analyse_token) - Performs comprehensive technical and fundamental analysis on cryptocurrency tokens
  • Mindshare Analysis (maiga_mindshare) - Analyzes social media sentiment and trending discussions about tokens over the last 24 hours
  • Token Information (maiga_token_info) - Retrieves detailed token holder information and on-chain analysis
  • Market Reports (maiga_market_report) - Generates specialized market reports (Market Behavior, Open Interest, Multi-Timeframe, Fund Flow)
  • KOL Analysis (maiga_kol_analysis) - Analyzes the influence and statistics of cryptocurrency influencers on X (Twitter)
  • Trending Tokens (maiga_trending_tokens) - Retrieves top trending tokens in the last 24 hours based on social media mentions and activity

Prerequisites

  • Node.js (v16 or higher)
  • npm, yarn, pnpm, or bun
  • Maiga Partner API token (contact your account manager to obtain)

Installation

  1. Clone the repository:
git clone <repository-url>
cd maiga
  1. Install dependencies:
npm install
  1. Obtain a Maiga Partner API token:
    • Contact your Maiga account manager to obtain your partner API token
    • Keep your API token secure and ready for configuration

Configuration

The server requires the following configuration:

  • apiToken (required): Your Maiga Partner API token for authentication

Configuration Methods

1. Smithery Playground (Development)

When running npm run dev, the Smithery Playground will open in your browser. Enter your apiToken in the configuration section.

2. URL Parameters (Testing)

When connecting via HTTP, pass configuration as URL query parameters:

http://localhost:8081/mcp?apiToken=your_api_token_here

3. Production Configuration

Once deployed to Smithery, users can securely manage their configurations through the configuration UI. Saved configurations are automatically applied when connecting to the server.

Development

Start the development server:

npm run dev

This will:

  • Start the MCP server on port 8081 (or custom port with --port flag)
  • Enable hot reloading
  • Open the Smithery Playground in your browser for testing

Build

Build for production:

npm run build

Creates a bundled server in .smithery/ directory.

Usage

With MCP-Compatible Applications

This server can be used with any application that supports the Model Context Protocol, such as:

  • Claude Desktop
  • MCP-enabled IDEs
  • Custom MCP clients
  • Smithery Playground

Tool Examples

Analyze a token:

maiga_analyse_token(identifier: "bitcoin")

Get mindshare analysis:

maiga_mindshare(identifier: "ethereum")

Get token holder information:

maiga_token_info(identifier: "0x1234567890abcdef...")

Generate market report:

maiga_market_report(mode: "Market_Behavior")

Analyze a KOL:

maiga_kol_analysis(username: "cz_binance")

Get trending tokens:

maiga_trending_tokens()

API Reference

Token Operations

  • maiga_analyse_token(identifier) - Comprehensive token analysis

    • Parameters:
      • identifier (string, required): Token symbol (e.g., "bitcoin", "ethereum", "BTC") or contract address
    • Returns: Technical analysis, price data, market cap, links, and analysis text
  • maiga_mindshare(identifier) - Social media sentiment analysis

    • Parameters:
      • identifier (string, required): Token symbol or contract address
    • Returns: Social sentiment analysis and trending discussions from the last 24 hours
  • maiga_token_info(identifier) - Token holder and on-chain analysis

    • Parameters:
      • identifier (string, required): Token contract address or identifier
    • Returns: Top holders, holder distribution analysis, and token information

Market Analysis

  • maiga_market_report(mode) - Generate market reports
    • Parameters:
      • mode (enum, required): Analysis mode
        • "Market_Behavior" - Overall market sentiment and behavior patterns
        • "Open_Interest" - Futures and derivatives open interest analysis
        • "Multi_Timeframe" - Multi-timeframe technical analysis
        • "Fund_Flow" - Capital flow and whale movement analysis
    • Returns: Mode-specific market analysis data

Social & Influencer Analysis

  • maiga_kol_analysis(username) - KOL influence analysis

    • Parameters:
      • username (string, required): Twitter username without @ symbol (e.g., "cz_binance")
    • Returns: Follower count, engagement metrics, reach statistics, and influence analysis
  • maiga_trending_tokens() - Get trending tokens

    • Parameters: None
    • Returns: Top trending tokens from the last 24 hours with mentions, sentiment, and trend data

Rate Limiting

The Maiga API enforces rate limiting:

  • Limit: 1000 requests per hour per IP address
  • Window: 3600 seconds (1 hour)

If you exceed the rate limit, you will receive a 429 Too Many Requests response with information about when you can retry. The server handles rate limit errors gracefully and provides clear error messages.

Error Handling

The server includes comprehensive error handling for:

  • API authentication failures (401 Unauthorized)
  • Invalid request parameters (400 Bad Request)
  • Rate limit exceeded (429 Too Many Requests)
  • Network connectivity issues
  • Invalid parameter validation
  • Maiga API errors (500 Internal Server Error)

All errors are returned as structured responses with descriptive messages. Rate limit errors include retry-after information.

Security

  • API tokens are required and validated at connection time
  • All requests use HTTPS
  • Input validation using Zod schemas
  • No sensitive data is logged in production
  • API tokens should never be exposed in client-side code or public repositories

Tech Stack

  • Runtime: TypeScript
  • MCP SDK: @modelcontextprotocol/sdk
  • HTTP Client: Native fetch API
  • Validation: Zod
  • Development: Smithery CLI
  • Build Tool: Smithery Build

Project Structure

maiga/
├── src/
│   └── index.ts          # Main server implementation with all tools
├── package.json          # Project dependencies and scripts
├── smithery.yaml         # Runtime specification
└── README.md            # This file

Deploy

Ready to deploy? Push your code to GitHub and deploy to Smithery:

  1. Create a new repository at github.com/new

  2. Initialize git and push to GitHub:

    git add .
    git commit -m "Initial commit"
    git remote add origin https://github.com/YOUR_USERNAME/YOUR_REPO.git
    git push -u origin main
    
  3. Deploy your server to Smithery at smithery.ai/new

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

ISC

Support

For issues related to:

Learn More

Changelog

v1.0.0

  • Initial release with full Maiga API integration
  • Support for all 6 Maiga API endpoints:
    • Token Analysis
    • Mindshare Analysis
    • Token Information
    • Market Reports
    • KOL Analysis
    • Trending Tokens
  • Comprehensive error handling and validation
  • Rate limit handling
  • Full TypeScript type safety

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured