Maiga API MCP Server
Provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token technicals, social sentiment tracking, and KOL insights. It enables AI assistants to retrieve market reports, trending token data, and detailed on-chain information.
README
Maiga API MCP Server
A Model Context Protocol (MCP) server that provides comprehensive integration with the Maiga API for cryptocurrency analysis, including token analysis, market reports, KOL insights, and trending token discovery.
Overview
This MCP server enables AI assistants and applications to interact with Maiga's cryptocurrency analysis platform through a standardized protocol. It provides access to technical and fundamental analysis, social sentiment analysis, token holder information, market reports, KOL (Key Opinion Leader) analytics, and trending token discovery.
Features
Available Tools
- Token Analysis (
maiga_analyse_token) - Performs comprehensive technical and fundamental analysis on cryptocurrency tokens - Mindshare Analysis (
maiga_mindshare) - Analyzes social media sentiment and trending discussions about tokens over the last 24 hours - Token Information (
maiga_token_info) - Retrieves detailed token holder information and on-chain analysis - Market Reports (
maiga_market_report) - Generates specialized market reports (Market Behavior, Open Interest, Multi-Timeframe, Fund Flow) - KOL Analysis (
maiga_kol_analysis) - Analyzes the influence and statistics of cryptocurrency influencers on X (Twitter) - Trending Tokens (
maiga_trending_tokens) - Retrieves top trending tokens in the last 24 hours based on social media mentions and activity
Prerequisites
- Node.js (v16 or higher)
- npm, yarn, pnpm, or bun
- Maiga Partner API token (contact your account manager to obtain)
Installation
- Clone the repository:
git clone <repository-url>
cd maiga
- Install dependencies:
npm install
- Obtain a Maiga Partner API token:
- Contact your Maiga account manager to obtain your partner API token
- Keep your API token secure and ready for configuration
Configuration
The server requires the following configuration:
apiToken(required): Your Maiga Partner API token for authentication
Configuration Methods
1. Smithery Playground (Development)
When running npm run dev, the Smithery Playground will open in your browser. Enter your apiToken in the configuration section.
2. URL Parameters (Testing)
When connecting via HTTP, pass configuration as URL query parameters:
http://localhost:8081/mcp?apiToken=your_api_token_here
3. Production Configuration
Once deployed to Smithery, users can securely manage their configurations through the configuration UI. Saved configurations are automatically applied when connecting to the server.
Development
Start the development server:
npm run dev
This will:
- Start the MCP server on port 8081 (or custom port with
--portflag) - Enable hot reloading
- Open the Smithery Playground in your browser for testing
Build
Build for production:
npm run build
Creates a bundled server in .smithery/ directory.
Usage
With MCP-Compatible Applications
This server can be used with any application that supports the Model Context Protocol, such as:
- Claude Desktop
- MCP-enabled IDEs
- Custom MCP clients
- Smithery Playground
Tool Examples
Analyze a token:
maiga_analyse_token(identifier: "bitcoin")
Get mindshare analysis:
maiga_mindshare(identifier: "ethereum")
Get token holder information:
maiga_token_info(identifier: "0x1234567890abcdef...")
Generate market report:
maiga_market_report(mode: "Market_Behavior")
Analyze a KOL:
maiga_kol_analysis(username: "cz_binance")
Get trending tokens:
maiga_trending_tokens()
API Reference
Token Operations
-
maiga_analyse_token(identifier)- Comprehensive token analysis- Parameters:
identifier(string, required): Token symbol (e.g., "bitcoin", "ethereum", "BTC") or contract address
- Returns: Technical analysis, price data, market cap, links, and analysis text
- Parameters:
-
maiga_mindshare(identifier)- Social media sentiment analysis- Parameters:
identifier(string, required): Token symbol or contract address
- Returns: Social sentiment analysis and trending discussions from the last 24 hours
- Parameters:
-
maiga_token_info(identifier)- Token holder and on-chain analysis- Parameters:
identifier(string, required): Token contract address or identifier
- Returns: Top holders, holder distribution analysis, and token information
- Parameters:
Market Analysis
maiga_market_report(mode)- Generate market reports- Parameters:
mode(enum, required): Analysis mode"Market_Behavior"- Overall market sentiment and behavior patterns"Open_Interest"- Futures and derivatives open interest analysis"Multi_Timeframe"- Multi-timeframe technical analysis"Fund_Flow"- Capital flow and whale movement analysis
- Returns: Mode-specific market analysis data
- Parameters:
Social & Influencer Analysis
-
maiga_kol_analysis(username)- KOL influence analysis- Parameters:
username(string, required): Twitter username without @ symbol (e.g., "cz_binance")
- Returns: Follower count, engagement metrics, reach statistics, and influence analysis
- Parameters:
-
maiga_trending_tokens()- Get trending tokens- Parameters: None
- Returns: Top trending tokens from the last 24 hours with mentions, sentiment, and trend data
Rate Limiting
The Maiga API enforces rate limiting:
- Limit: 1000 requests per hour per IP address
- Window: 3600 seconds (1 hour)
If you exceed the rate limit, you will receive a 429 Too Many Requests response with information about when you can retry. The server handles rate limit errors gracefully and provides clear error messages.
Error Handling
The server includes comprehensive error handling for:
- API authentication failures (401 Unauthorized)
- Invalid request parameters (400 Bad Request)
- Rate limit exceeded (429 Too Many Requests)
- Network connectivity issues
- Invalid parameter validation
- Maiga API errors (500 Internal Server Error)
All errors are returned as structured responses with descriptive messages. Rate limit errors include retry-after information.
Security
- API tokens are required and validated at connection time
- All requests use HTTPS
- Input validation using Zod schemas
- No sensitive data is logged in production
- API tokens should never be exposed in client-side code or public repositories
Tech Stack
- Runtime: TypeScript
- MCP SDK: @modelcontextprotocol/sdk
- HTTP Client: Native fetch API
- Validation: Zod
- Development: Smithery CLI
- Build Tool: Smithery Build
Project Structure
maiga/
├── src/
│ └── index.ts # Main server implementation with all tools
├── package.json # Project dependencies and scripts
├── smithery.yaml # Runtime specification
└── README.md # This file
Deploy
Ready to deploy? Push your code to GitHub and deploy to Smithery:
-
Create a new repository at github.com/new
-
Initialize git and push to GitHub:
git add . git commit -m "Initial commit" git remote add origin https://github.com/YOUR_USERNAME/YOUR_REPO.git git push -u origin main -
Deploy your server to Smithery at smithery.ai/new
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
ISC
Support
For issues related to:
- This MCP Server: Create an issue in this repository
- Maiga API: Contact your Maiga account manager
- Model Context Protocol: Visit MCP Documentation
- Smithery: Visit Smithery Documentation
Learn More
Changelog
v1.0.0
- Initial release with full Maiga API integration
- Support for all 6 Maiga API endpoints:
- Token Analysis
- Mindshare Analysis
- Token Information
- Market Reports
- KOL Analysis
- Trending Tokens
- Comprehensive error handling and validation
- Rate limit handling
- Full TypeScript type safety
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.