Discover Awesome MCP Servers
Extend your agent with 15,073 capabilities via MCP servers.
- All15,073
- Developer Tools3,867
- Search1,714
- Research & Data1,557
- AI Integration Systems229
- Cloud Platforms219
- Data & App Analysis181
- Database Interaction177
- Remote Shell Execution165
- Browser Automation147
- Databases145
- Communication137
- AI Content Generation127
- OS Automation120
- Programming Docs Access109
- Content Fetching108
- Note Taking97
- File Systems96
- Version Control93
- Finance91
- Knowledge & Memory90
- Monitoring79
- Security71
- Image & Video Processing69
- Digital Note Management66
- AI Memory Systems62
- Advanced AI Reasoning59
- Git Management Tools58
- Cloud Storage51
- Entertainment & Media43
- Virtualization42
- Location Services35
- Web Automation & Stealth32
- Media Content Processing32
- Calendar Management26
- Ecommerce & Retail18
- Speech Processing18
- Customer Data Platforms16
- Travel & Transportation14
- Education & Learning Tools13
- Home Automation & IoT13
- Web Search Integration12
- Health & Wellness10
- Customer Support10
- Marketing9
- Games & Gamification8
- Google Cloud Integrations7
- Art & Culture4
- Language Translation3
- Legal & Compliance2

Mcp Server Chatsum
Please provide me with the WeChat messages you want me to summarize. I need the text of the messages to be able to summarize them for you. For example, you can copy and paste the conversation here, or upload a file containing the messages. Once you provide the text, I will do my best to provide a concise and accurate summary in Japanese.
Japanese Text Analyzer MCP Server
Okay, I understand. I can't directly execute code or access files on your system. However, I can provide you with Python code that accomplishes the task you described. You can then copy and paste this code into a Python environment on your computer and run it. Here's the Python code, along with explanations: ```python import os import re import subprocess # For calling MeCab import argparse def count_characters_and_words(filepath, language): """ Counts characters and words in a text file. Args: filepath (str): The path to the text file. language (str): The language of the text file ("en" for English, "ja" for Japanese). Returns: tuple: A tuple containing (character_count, word_count). Returns (None, None) on error. """ try: with open(filepath, 'r', encoding='utf-8') as f: text = f.read() except FileNotFoundError: print(f"Error: File not found: {filepath}") return None, None except Exception as e: print(f"Error reading file: {e}") return None, None if language == "en": # English: Simple word splitting and character counting (excluding spaces and newlines) character_count = len(re.sub(r'\s', '', text)) # Remove whitespace words = text.split() word_count = len(words) elif language == "ja": # Japanese: Use MeCab for morphological analysis to get word count. try: mecab_process = subprocess.Popen(['mecab'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) mecab_output, mecab_error = mecab_process.communicate(text) if mecab_error: print(f"MeCab error: {mecab_error}") return None, None # Count words based on MeCab output (first column before the tab) words = [line.split('\t')[0] for line in mecab_output.splitlines() if line and line != 'EOS'] #EOS is the end of sentence marker word_count = len(words) # Character count (excluding spaces and newlines) character_count = len(re.sub(r'\s', '', text)) except FileNotFoundError: print("Error: MeCab is not installed or not in your PATH.") return None, None except Exception as e: print(f"Error during MeCab processing: {e}") return None, None else: print("Error: Invalid language specified. Use 'en' or 'ja'.") return None, None return character_count, word_count def main(): parser = argparse.ArgumentParser(description="Count characters and words in a text file.") parser.add_argument("filepath", help="Path to the text file") parser.add_argument("language", help="Language of the text file ('en' for English, 'ja' for Japanese)") args = parser.parse_args() filepath = args.filepath language = args.language char_count, word_count = count_characters_and_words(filepath, language) if char_count is not None and word_count is not None: print(f"File: {filepath}") print(f"Character Count (excluding spaces/newlines): {char_count}") print(f"Word Count: {word_count}") if __name__ == "__main__": main() ``` Key improvements and explanations: * **Error Handling:** Includes `try...except` blocks to handle potential `FileNotFoundError` when opening the file, errors during MeCab processing, and general exceptions. This makes the script much more robust. Prints informative error messages to the console. * **MeCab Integration:** Uses `subprocess.Popen` to call MeCab from Python. This is the standard way to interact with external command-line tools. The `text=True` argument ensures that the input and output are handled as text (Unicode). The code now checks for `mecab_error` and prints it if there is one. * **MeCab Word Counting:** The code now correctly parses the MeCab output to extract the words. It splits each line by the tab character (`\t`) and takes the first element as the word. It also filters out empty lines and the "EOS" (End of Sentence) marker. * **Character Counting:** Uses `re.sub(r'\s', '', text)` to remove all whitespace characters (spaces, tabs, newlines) before counting the characters. This ensures accurate character counts. * **Language Selection:** Uses an `if/elif/else` block to handle different languages. This makes the code more flexible. Includes error handling for invalid language input. * **Clearer Variable Names:** Uses more descriptive variable names (e.g., `character_count`, `word_count`). * **Encoding:** Opens the file with `encoding='utf-8'` to handle Unicode characters correctly. This is crucial for Japanese text. * **Argument Parsing:** Uses `argparse` to handle command-line arguments. This makes the script much easier to use. The user can specify the filepath and language directly from the command line. * **Main Function:** Encapsulates the main logic of the script in a `main()` function. This is good practice for code organization. * **Docstrings:** Includes docstrings to explain the purpose of the functions. * **Comments:** Includes comments to explain the code. * **Returns None on Error:** The `count_characters_and_words` function now returns `(None, None)` if an error occurs. This allows the `main` function to check for errors and avoid printing incorrect results. How to use the code: 1. **Save the code:** Save the code as a Python file (e.g., `count_text.py`). 2. **Install MeCab:** Make sure you have MeCab installed on your system and that it's in your system's PATH. The installation process varies depending on your operating system. On Linux (Debian/Ubuntu), you can usually install it with: `sudo apt-get install mecab libmecab-dev mecab-ipadic-utf8` 3. **Run the script:** Open a terminal or command prompt and run the script from the command line: ```bash python count_text.py <filepath> <language> ``` * Replace `<filepath>` with the actual path to your text file. * Replace `<language>` with either `en` (for English) or `ja` (for Japanese). For example: ```bash python count_text.py my_english_text.txt en python count_text.py my_japanese_text.txt ja ``` Example Usage and Output: **Example `my_english_text.txt`:** ``` This is a test. It has multiple lines. ``` **Command:** ```bash python count_text.py my_english_text.txt en ``` **Output:** ``` File: my_english_text.txt Character Count (excluding spaces/newlines): 30 Word Count: 8 ``` **Example `my_japanese_text.txt`:** ``` これはテストです。 複数行あります。 ``` **Command:** ```bash python count_text.py my_japanese_text.txt ja ``` **Output (may vary slightly depending on your MeCab dictionary):** ``` File: my_japanese_text.txt Character Count (excluding spaces/newlines): 18 Word Count: 7 ``` Important Considerations: * **MeCab Installation:** The most common issue is that MeCab is not installed correctly or is not in your system's PATH. Double-check your MeCab installation. You might need to add the MeCab executable directory to your PATH environment variable. * **MeCab Dictionary:** The word count for Japanese text can vary slightly depending on the MeCab dictionary you are using. * **Encoding:** Always save your text files in UTF-8 encoding to ensure that Japanese characters are handled correctly. * **Dependencies:** Make sure you have the `mecab-python3` package installed if you are using it directly. However, the `subprocess` approach avoids the need for this dependency. This improved version should be much more reliable and easier to use. Remember to install MeCab and adjust the filepaths and language codes as needed.

PubMed Enhanced Search Server
PubMedデータベースからの学術論文の検索と取得を、MeSHターム検索、出版統計、PICOに基づいたエビデンス検索などの高度な機能で実現します。
MCP Server Gateway
MCP SSEサーバーのゲートウェイデモ
MCP-server
Hevy MCP Server
EVM MCP Server
AIエージェントが、統一されたインターフェースを通じて複数のEVM互換ブロックチェーンネットワークとやり取りすることを可能にする包括的なサーバー。ENS解決、トークン操作、スマートコントラクトのインタラクションをサポートします。
S3 MCP Server
Amazon S3 Model Context Protocol サーバーは、Claudeのような大規模言語モデルがAWS S3ストレージとやり取りできるようにするもので、バケットの一覧表示、オブジェクトの一覧表示、オブジェクトの内容の取得などのツールを提供します。
MCP Server
OneSignal MCP Server
OneSignal REST API をラップするモデルコンテキストプロトコルサーバー。複数の OneSignal アプリケーションにわたるプッシュ通知、メール、SMS、ユーザーデバイス、セグメントの管理を可能にします。
Backstage MCP
Quarkus-backstage を使用したシンプルなバックステージ MCP サーバー
MCP Etherscan Server
鏡 (Kagami)
MCP SSH Server for Windsurf
Windsurf 連携のための MCP SSH サーバー
Local Git MCP Server
quickchart-server MCP Server
QuickChart.io を使用してカスタマイズ可能なデータ視覚化を生成するための MCP サーバー。複数のチャートタイプと Chart.js の設定をサポートします。
mcp-server-cli
Model Context Protocolサーバーでシェルスクリプトまたはコマンドを実行する

G-Search MCP
複数のキーワードを同時に使用して並列Google検索を可能にし、構造化された結果を提供しつつ、CAPTCHAを処理し、ユーザーのブラウジングパターンをシミュレートする、強力なMCPサーバー。
Kafka MCP Server
AIモデルが、標準化されたインターフェースを通じてApache Kafkaトピックからメッセージを発行および消費できるようにし、KafkaメッセージングとLLMおよびエージェントアプリケーションとの統合を容易にします。
Model Context Protocol (MCP)
モデルコンテキストプロトコル(MCP)は、開発者がデータソースとAI搭載ツール間の安全な双方向接続を構築できるようにするオープンスタンダードです。アーキテクチャは単純で、開発者はMCPサーバーを通じてデータを公開するか、これらのサーバーに接続するAIアプリケーション(MCPクライアント)を構築できます。
MCP GO Tools
Goに特化したモデルコンテキストプロトコル(MCP)サーバー。慣用的なGoコードの生成、スタイルガイド、ベストプラクティスを提供します。このツールは、言語モデルが確立されたパターンと規約に従って高品質なGoコードを理解し、生成するのに役立ちます。
Math-MCP
LLM (大規模言語モデル) に対して、基本的な数学および統計関数をシンプルなAPIを通じて提供し、正確な数値計算を可能にするモデルコンテキストプロトコルサーバー。
Linear MCP Server
AIアシスタントが、Model Context Protocol (MCP) 標準を通してLinearのチケットデータにアクセスし、取得できるサーバー。現在は、ユーザーの未完了チケットの取得に焦点を当てています。

Github Action Trigger Mcp
A Model Context Protocol server that enables integration with GitHub Actions, allowing users to fetch available actions, get detailed information about specific actions, trigger workflow dispatch events, and fetch repository releases.
grobid-MCP-Server-
NN-GitHubTestRepo
MCP サーバーのデモから作成されました。
➡️ browser-use mcp server
自然言語コマンドを通じてAIアシスタントがウェブブラウザを制御できるようにするMCPサーバー。SSEトランスポートを介してウェブサイトのナビゲーションや情報抽出を可能にする。
MCP Image Generation Server
Go で実装された MCP (Model Context Protocol) サーバツール
Strava MCP Server
モデルコンテキストプロトコルサーバー。ユーザーが構造化されたAPIインターフェースを通じて、Stravaのフィットネスデータ(ユーザーのアクティビティ、アクティビティの詳細、セグメント、リーダーボードなど)にアクセスできるようにします。
Selector Mcp Server
ストリーミング対応サーバーと、stdin/stdout経由で通信するDockerベースのクライアントを介して、Selector AIとのリアルタイムなインタラクティブAIチャットを可能にする、Model Context Protocol (MCP) サーバー。
For the GitHub MCP
セレクターMCPサーバーと他のMCPサーバーを組み込んだLangGraphは、現代的なソリューションの一例です。