GitHub Analyzer Pro MCP Server
A production-ready server featuring over 28 tools for comprehensive GitHub analysis, including repository metadata, issue tracking, and workflow monitoring. It enables users to search repositories, analyze contributor activity, and inspect codebase health through natural language.
README
๐ GitHub Analyzer Pro MCP Server v2.0
A production-ready Model Context Protocol (MCP) server with 28+ powerful tools for comprehensive GitHub analysis, built with FastMCP.
โจ Complete Feature Set
๐ฆ Repository Analysis (8 Tools)
- get_repository_info - Complete repo metadata with stats
- get_repository_languages - Language breakdown with percentages
- get_repository_contributors - Top contributors ranking
- get_repository_tags - Release tags listing
- get_repository_branches - Branch info with protection status
- get_repository_stats - Comprehensive analytics
- get_repository_traffic - Views & clones (requires permissions)
- get_repository_community - Health score & community files
๐ Commits & History (3 Tools)
- get_repository_commits - Commit history with authors
- get_commit_details - Deep dive into specific commits
- compare_commits - Compare branches or commits
๐ Issues & Pull Requests (3 Tools)
- get_repository_issues - Filter by state, labels
- get_pull_requests - PR details with merge status
- get_issue_comments - Comment threads
๐ Files & Content (4 Tools)
- get_file_content - Read any file from repo
- get_directory_contents - Browse directory structure
- get_repository_readme - Quick README access
- search_code - Find code across repositories
๐ Search & Discovery (5 Tools)
- search_repositories - Advanced repo search
- search_users - Find users & organizations
- search_topics - Discover GitHub topics
- get_trending_repositories - Hot repos by language
- get_trending_developers - Active developers
๐ค Users & Organizations (4 Tools)
- get_user_profile - Complete user information
- get_user_repositories - User's public repos
- get_user_activity - Recent activity feed
- get_organization_info - Organization details
๐ฆ Releases & Packages (2 Tools)
- get_releases - All releases with download stats
- get_latest_release - Latest release details
โ๏ธ Workflows & Actions (2 Tools)
- get_workflows - List GitHub Actions workflows
- get_workflow_runs - Recent workflow execution history
๐ ๏ธ Utilities (2 Tools)
- get_rate_limit - Check API rate limit status
- server_info - Server capabilities & stats
๐ Quick Start
1. Install Dependencies
pip install fastmcp httpx python-dotenv
2. Set GitHub Token (Recommended)
Without token: 60 requests/hour
With token: 5000 requests/hour + full search access
# Linux/Mac
export GITHUB_TOKEN='ghp_your_token_here'
# Windows PowerShell
$env:GITHUB_TOKEN='ghp_your_token_here'
# Or create .env file
echo "GITHUB_TOKEN=ghp_your_token_here" > .env
Get your token: https://github.com/settings/tokens
- Required scopes:
public_repo,read:user - Optional:
repo(for private repositories)
3. Run the Server
python github_server.py
Expected output:
============================================================
๐ GitHub Analyzer Pro MCP Server v2.0.0
============================================================
๐ก Server Configuration:
Transport: HTTP
Host: 0.0.0.0
Port: 8001
Timeout: 30.0s
๐ Authentication:
GitHub Token: โ Configured
Rate Limit: 5000/hr
๐ Available Tools: 28
โข Repository Analysis (8 tools)
โข Commits & History (3 tools)
โข Issues & PRs (3 tools)
โข Files & Content (4 tools)
โข Search & Discovery (5 tools)
โข Users & Organizations (4 tools)
โข Releases & Packages (2 tools)
โข Workflows & Actions (2 tools)
โข Utilities (2 tools)
โจ Production Features:
โ Enhanced error handling
โ Request caching
โ Rate limit monitoring
โ Community health metrics
โ Traffic analytics
โ GitHub Actions support
๐ Server Status: READY
Access at: http://localhost:8001
============================================================
๐ Usage Examples
๐ Advanced Repository Analysis
# Get comprehensive stats
{
"owner": "facebook",
"repo": "react"
}
# Response includes:
# - Stars, forks, watchers
# - Language breakdown
# - Commit activity
# - Health score
# - Community files
# - Traffic data (if authorized)
๐ Language Distribution
# Get language percentages
{
"owner": "microsoft",
"repo": "vscode"
}
# Returns:
# - TypeScript: 45.2%
# - JavaScript: 30.1%
# - CSS: 15.7%
# - etc.
๐ฅ Top Contributors
# See who contributes most
{
"owner": "torvalds",
"repo": "linux",
"limit": 10
}
๐ Compare Branches
# See what changed between branches
{
"owner": "python",
"repo": "cpython",
"base": "3.11",
"head": "main"
}
# Shows:
# - Commits ahead/behind
# - Files changed
# - Line additions/deletions
๐ Filter Issues by Labels
# Find specific issues
{
"owner": "microsoft",
"repo": "vscode",
"state": "open",
"labels": "bug,high-priority"
}
๐ฆ Release Management
# Get latest release
{
"owner": "nodejs",
"repo": "node"
}
# Returns:
# - Version tag
# - Release notes
# - Download links
# - Asset download counts
โ๏ธ Monitor GitHub Actions
# Check CI/CD status
{
"owner": "rust-lang",
"repo": "rust"
}
# See:
# - All workflows
# - Recent runs
# - Success/failure status
๐ค User Activity Feed
# What's a user been up to?
{
"username": "gvanrossum",
"limit": 20
}
# Shows:
# - Recent commits
# - PRs created
# - Issues opened
# - Repos starred
๐ฅ Discover Trending
# Hot Python repos this week
{
"language": "python",
"since": "weekly"
}
๐ Community Health
# Check repo health
{
"owner": "django",
"repo": "django"
}
# Returns:
# - Health percentage
# - README quality
# - Has CODE_OF_CONDUCT
# - Has CONTRIBUTING guide
# - Issue templates
๐ง Connect to Claude Desktop
Configuration
macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
Windows:
%APPDATA%\Claude\claude_desktop_config.json
Linux:
~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"github-pro": {
"url": "http://localhost:8001/mcp/v1"
}
}
}
Remote server:
{
"mcpServers": {
"github-pro": {
"url": "http://your-server-ip:8001/mcp/v1"
}
}
}
Restart Claude Desktop after configuration!
๐ฌ Talk to Claude
Once connected, ask Claude things like:
"Analyze the React repository - give me complete statistics"
"Show me the language breakdown for microsoft/vscode"
"Who are the top 10 contributors to the Linux kernel?"
"Compare the main and develop branches of my-org/my-repo"
"Find all open high-priority bugs in facebook/react"
"What's the latest release of Node.js? Show download counts"
"Are GitHub Actions passing for rust-lang/rust?"
"What has Guido van Rossum been working on lately?"
"Show me trending Rust repositories this month"
"Check the community health score for django/django"
"Search for async functions in the FastAPI codebase"
"Get traffic stats for my repository" (requires auth)
"Show me all workflows and their status for my-org/api"
๐ญ Production Features
โ Enhanced Error Handling
- Detailed error messages
- Rate limit detection
- Authentication failure handling
- Network timeout management
- Resource not found handling
โ Performance Optimization
- Request timeout control (30s)
- Response caching (5min TTL)
- Efficient batch requests
- Maximum result limiting
โ Security
- Token-based authentication
- Secure environment variables
- No token logging
- Rate limit compliance
โ Monitoring & Debugging
- Rate limit tracking
- Request/response logging
- Server health status
- Detailed tool statistics
โ Data Quality
- Response validation
- Safe JSON encoding
- Truncation for large responses
- Binary file handling
๐ณ Docker Deployment
Dockerfile
FROM python:3.10-slim
WORKDIR /app
# Install dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy server
COPY github_server.py .
# Environment
ENV GITHUB_TOKEN=""
ENV PYTHONUNBUFFERED=1
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \
CMD python -c "import httpx; httpx.get('http://localhost:8001/mcp/v1/health')"
EXPOSE 8001
CMD ["python", "github_server.py"]
requirements.txt
fastmcp>=2.14.0
httpx>=0.24.0
python-dotenv>=1.0.0
Build & Run
# Build image
docker build -t github-mcp-pro .
# Run with token
docker run -d \
-p 8001:8001 \
-e GITHUB_TOKEN='ghp_your_token' \
--name github-server \
--restart unless-stopped \
github-mcp-pro
# View logs
docker logs -f github-server
# Stop
docker stop github-server
Docker Compose
version: '3.8'
services:
github-mcp:
build: .
ports:
- "8001:8001"
environment:
- GITHUB_TOKEN=${GITHUB_TOKEN}
restart: unless-stopped
healthcheck:
test: ["CMD", "python", "-c", "import httpx; httpx.get('http://localhost:8001/mcp/v1/health')"]
interval: 30s
timeout: 10s
retries: 3
โ๏ธ Cloud Deployment
Deploy to Railway
# Install Railway CLI
npm install -g @railway/cli
# Login
railway login
# Initialize
railway init
# Deploy
railway up
# Set environment
railway variables set GITHUB_TOKEN=ghp_your_token
# Get URL
railway domain
Deploy to Render
- Connect your GitHub repository
- Create new Web Service
- Set environment variables:
GITHUB_TOKEN: Your token
- Build command:
pip install -r requirements.txt - Start command:
python github_server.py - Deploy!
Deploy to Fly.io
# Install flyctl
curl -L https://fly.io/install.sh | sh
# Login
flyctl auth login
# Launch
flyctl launch
# Set secret
flyctl secrets set GITHUB_TOKEN=ghp_your_token
# Deploy
flyctl deploy
# Check status
flyctl status
Deploy to Heroku
# Create Procfile
echo "web: python github_server.py" > Procfile
# Create app
heroku create github-mcp-pro
# Set token
heroku config:set GITHUB_TOKEN=ghp_your_token
# Deploy
git push heroku main
# Check logs
heroku logs --tail
๐ Advanced Search Queries
GitHub supports powerful search syntax:
# Search by stars
"query": "web framework stars:>10000"
# Search by language
"query": "machine learning language:python"
# Search by topic
"query": "topic:artificial-intelligence"
# Search by license
"query": "license:mit"
# Search in organization
"query": "org:google android"
# Search by size
"query": "size:>1000 language:go"
# Search by fork count
"query": "forks:>500 language:rust"
# Search by pushed date
"query": "pushed:>2024-01-01"
# Combined
"query": "neural network language:python stars:>1000 topic:deep-learning"
๐ Rate Limit Management
Check Your Limits
# Use the tool
get_rate_limit()
# Returns:
{
"core": {
"limit": 5000,
"remaining": 4850,
"reset": "2024-12-15T10:30:00"
},
"search": {
"limit": 30,
"remaining": 28,
"reset": "2024-12-15T09:45:00"
}
}
Best Practices
- Use authentication - 5000 vs 60 requests/hour
- Cache results - Built-in 5-minute caching
- Batch requests - Use higher limits per call
- Monitor usage - Check rate_limit regularly
- Handle errors - Graceful degradation
Rate Limit Headers
The server automatically handles:
X-RateLimit-Limit- Total limitX-RateLimit-Remaining- Requests leftX-RateLimit-Reset- Reset timestampRetry-After- Seconds to wait
๐ก๏ธ Security Best Practices
Token Management
# โ
DO: Use environment variables
export GITHUB_TOKEN='ghp_...'
# โ
DO: Use .env file (add to .gitignore)
echo "GITHUB_TOKEN=ghp_..." > .env
echo ".env" >> .gitignore
# โ DON'T: Hardcode in files
GITHUB_TOKEN = "ghp_..." # NEVER DO THIS!
# โ DON'T: Commit to git
git add .env # NEVER DO THIS!
Token Scopes
Minimum required:
- โ
public_repo- Access public repositories - โ
read:user- Read user profile
Optional for more features:
repo- Access private repositoriesread:org- Read organization dataadmin:repo_hook- Manage webhooks
Token Rotation
# Create new token
1. Visit https://github.com/settings/tokens
2. Generate new token
3. Update environment variable
4. Restart server
5. Revoke old token
๐งช Testing
Manual Testing
# Test repository info
curl -X POST http://localhost:8001/mcp/v1/tools/get_repository_info \
-H "Content-Type: application/json" \
-d '{"owner": "facebook", "repo": "react"}'
# Test search
curl -X POST http://localhost:8001/mcp/v1/tools/search_repositories \
-H "Content-Type: application/json" \
-d '{"query": "fastapi", "limit": 5}'
# Test user profile
curl -X POST http://localhost:8001/mcp/v1/tools/get_user_profile \
-H "Content-Type: application/json" \
-d '{"username": "torvalds"}'
Python Testing
import requests
# Test connection
response = requests.post(
"http://localhost:8001/mcp/v1/tools/server_info",
json={}
)
assert response.status_code == 200
print(response.json())
# Test repository
response = requests.post(
"http://localhost:8001/mcp/v1/tools/get_repository_info",
json={"owner": "python", "repo": "cpython"}
)
data = response.json()
assert "name" in data
print(f"Repository: {data['name']}")
๐ Monitoring & Logging
Server Logs
The server provides detailed logging:
[2024-12-15 10:30:45] INFO - Server started on port 8001
[2024-12-15 10:31:12] INFO - Tool called: get_repository_info
[2024-12-15 10:31:13] INFO - GitHub API request: repos/facebook/react
[2024-12-15 10:31:14] INFO - Response cached for 300s
[2024-12-15 10:31:14] INFO - Tool execution completed: 1.2s
Health Monitoring
# Check server health
curl http://localhost:8001/health
# Check rate limits
curl -X POST http://localhost:8001/mcp/v1/tools/get_rate_limit \
-H "Content-Type: application/json" \
-d '{}'
๐ Troubleshooting
Common Issues
"Rate limit exceeded"
# Solution: Add GitHub token
export GITHUB_TOKEN='ghp_your_token'
"Repository not found"
# Check: Owner and repo spelling
# Check: Repository is public (or token has access)
# Check: Repository hasn't been deleted/renamed
"Connection refused"
# Check: Server is running
python github_server.py
# Check: Port 8001 is available
lsof -i :8001 # Linux/Mac
netstat -ano | findstr :8001 # Windows
"Invalid token"
# Solution: Regenerate token with correct scopes
# Required: public_repo, read:user
"Timeout error"
# Check: Internet connection
# Check: GitHub status: https://www.githubstatus.com/
# Increase: Timeout in code (REQUEST_TIMEOUT)
Debug Mode
# Add to github_server.py for debugging
import logging
logging.basicConfig(level=logging.DEBUG)
๐ Advanced Usage
Custom Tool Implementation
Add your own tools to github_server.py:
@mcp.tool()
@safe_json_response
def your_custom_tool(param: str) -> dict:
"""
Your custom GitHub tool.
Args:
param: Parameter description
Returns:
Custom data
"""
data = gh_client.request(f"your/endpoint/{param}")
return {
"result": data
}
Batch Processing
# Process multiple repos
repos = [
("facebook", "react"),
("microsoft", "vscode"),
("google", "flutter")
]
for owner, repo in repos:
info = get_repository_info(owner, repo)
print(f"{owner}/{repo}: {info['statistics']['stars']} stars")
Caching Strategy
The server includes built-in caching (5 minutes). Customize:
from functools import lru_cache
@lru_cache(maxsize=128)
def cached_request(endpoint: str):
return gh_client.request(endpoint)
๐ Requirements
- Python: 3.10 or higher
- Dependencies:
fastmcp>=2.14.0httpx>=0.24.0python-dotenv>=1.0.0
๐ค Contributing
Contributions welcome! Here's how:
- Fork the repository
- Create a feature branch
- Add your improvements
- Test thoroughly
- Submit a pull request
Ideas for Contributions
- Add more GitHub features
- Implement GraphQL API support
- Add webhook handlers
- Create visualization tools
- Add analytics dashboards
- Improve caching strategies
- Add more search filters
- Enhance error messages
- Add rate limit prediction
- Create CLI interface
๐ License
MIT License - See LICENSE file for details
๐ Credits
- GitHub API - Data provider
- FastMCP - MCP framework
- Anthropic - Claude and MCP specification
- httpx - HTTP client
- Contributors - Thank you!
๐ Support
- Documentation: This README
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- API Docs: GitHub REST API
โญ Star History
If this project helps you, please consider giving it a โญ!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.