Aider MCP Server

Aider MCP Server

Allows Claude Code to offload AI coding tasks to Aider, reducing costs and enabling more control over which models handle specific coding tasks.

Category
Visit Server

README

Aider MCP Server - Experimental

Model context protocol server for offloading AI coding work to Aider, enhancing development efficiency and flexibility.

Overview

This server allows Claude Code to offload AI coding tasks to Aider, the best open source AI coding assistant. By delegating certain coding tasks to Aider, we can reduce costs, gain control over our coding model and operate Claude Code in a more orchestrative way to review and revise code.

Setup

  1. Clone the repository:
git clone https://github.com/disler/aider-mcp-server.git
  1. Install dependencies:
uv sync
  1. Create your environment file:
cp .env.sample .env
  1. Configure your API keys in the .env file (or use the mcpServers "env" section) to have the api key needed for the model you want to use in aider:
GEMINI_API_KEY=your_gemini_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
...see .env.sample for more
  1. Copy and fill out the the .mcp.json into the root of your project and update the --directory to point to this project's root directory and the --current-working-dir to point to the root of your project.
{
  "mcpServers": {
    "aider-mcp-server": {
      "type": "stdio",
      "command": "uv",
      "args": [
        "--directory",
        "<path to this project>",
        "run",
        "aider-mcp-server",
        "--editor-model",
        "gpt-4o",
        "--current-working-dir",
        "<path to your project>"
      ],
      "env": {
        "GEMINI_API_KEY": "<your gemini api key>",
        "OPENAI_API_KEY": "<your openai api key>",
        "ANTHROPIC_API_KEY": "<your anthropic api key>",
        ...see .env.sample for more
      }
    }
  }
}
uv run aider-mcp-server

Testing

To run all tests:

uv run pytest

To run specific tests:

# Test listing models
uv run pytest src/aider_mcp_server/tests/atoms/tools/test_aider_list_models.py

# Test AI coding
uv run pytest src/aider_mcp_server/tests/atoms/tools/test_aider_ai_code.py

Note: The AI coding tests require a valid API key for the Gemini model. Make sure to set it in your .env file before running the tests.

Add this MCP server to Claude Code

Add with gemini-2.5-pro-exp-03-25

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "gemini/gemini-2.5-pro-exp-03-25" \
  --current-working-dir "<path to your project>"

Add with gemini-2.5-pro-preview-03-25

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "gemini/gemini-2.5-pro-preview-03-25" \
  --current-working-dir "<path to your project>"

Add with quasar-alpha

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "openrouter/openrouter/quasar-alpha" \
  --current-working-dir "<path to your project>"

Add with llama4-maverick-instruct-basic

claude mcp add aider-mcp-server -s local \
  -- \
  uv --directory "<path to the aider mcp server project>" \
  run aider-mcp-server \
  --editor-model "fireworks_ai/accounts/fireworks/models/llama4-maverick-instruct-basic" \
  --current-working-dir "<path to your project>"

Usage

This MCP server provides the following functionalities:

  1. Offload AI coding tasks to Aider:

    • Takes a prompt and file paths
    • Uses Aider to implement the requested changes
    • Returns success or failure
  2. List available models:

    • Provides a list of models matching a substring
    • Useful for discovering supported models

Available Tools

This MCP server exposes the following tools:

1. aider_ai_code

This tool allows you to run Aider to perform AI coding tasks based on a provided prompt and specified files.

Parameters:

  • ai_coding_prompt (string, required): The natural language instruction for the AI coding task.
  • relative_editable_files (list of strings, required): A list of file paths (relative to the current_working_dir) that Aider is allowed to modify. If a file doesn't exist, it will be created.
  • relative_readonly_files (list of strings, optional): A list of file paths (relative to the current_working_dir) that Aider can read for context but cannot modify. Defaults to an empty list [].
  • model (string, optional): The primary AI model Aider should use for generating code. Defaults to "gemini/gemini-2.5-pro-exp-03-25". You can use the list_models tool to find other available models.
  • editor_model (string, optional): The AI model Aider should use for editing/refining code, particularly when using architect mode. If not provided, the primary model might be used depending on Aider's internal logic. Defaults to None.

Example Usage (within an MCP request):

{
  "name": "aider_ai_code",
  "parameters": {
    "ai_coding_prompt": "Refactor the calculate_sum function in calculator.py to handle potential TypeError exceptions.",
    "relative_editable_files": ["src/calculator.py"],
    "relative_readonly_files": ["docs/requirements.txt"],
    "model": "openai/gpt-4o"
  }
}

Returns:

  • A simple string indicating the outcome: "success" or "failure".

2. list_models

This tool lists available AI models supported by Aider that match a given substring.

Parameters:

  • substring (string, required): The substring to search for within the names of available models.

Example Usage (within an MCP request):

{
  "name": "list_models",
  "parameters": {
    "substring": "gemini"
  }
}

Returns:

  • A list of model name strings that match the provided substring. Example: ["gemini/gemini-1.5-flash", "gemini/gemini-1.5-pro", "gemini/gemini-pro"]

Architecture

The server is structured as follows:

  • Server layer: Handles MCP protocol communication
  • Atoms layer: Individual, pure functional components
    • Tools: Specific capabilities (AI coding, listing models)
    • Utils: Constants and helper functions
    • Data Types: Type definitions using Pydantic

All components are thoroughly tested for reliability.

Codebase Structure

The project is organized into the following main directories and files:

.
├── ai_docs                   # Documentation related to AI models and examples
│   ├── just-prompt-example-mcp-server.xml
│   └── programmable-aider-documentation.md
├── pyproject.toml            # Project metadata and dependencies
├── README.md                 # This file
├── specs                     # Specification documents
│   └── init-aider-mcp-exp.md
├── src                       # Source code directory
│   └── aider_mcp_server      # Main package for the server
│       ├── __init__.py       # Package initializer
│       ├── __main__.py       # Main entry point for the server executable
│       ├── atoms             # Core, reusable components (pure functions)
│       │   ├── __init__.py
│       │   ├── data_types.py # Pydantic models for data structures
│       │   ├── logging.py    # Custom logging setup
│       │   ├── tools         # Individual tool implementations
│       │   │   ├── __init__.py
│       │   │   ├── aider_ai_code.py # Logic for the aider_ai_code tool
│       │   │   └── aider_list_models.py # Logic for the list_models tool
│       │   └── utils.py      # Utility functions and constants (like default models)
│       ├── server.py         # MCP server logic, tool registration, request handling
│       └── tests             # Unit and integration tests
│           ├── __init__.py
│           └── atoms         # Tests for the atoms layer
│               ├── __init__.py
│               ├── test_logging.py # Tests for logging
│               └── tools     # Tests for the tools
│                   ├── __init__.py
│                   ├── test_aider_ai_code.py # Tests for AI coding tool
│                   └── test_aider_list_models.py # Tests for model listing tool
  • src/aider_mcp_server: Contains the main application code.
    • atoms: Holds the fundamental building blocks. These are designed to be pure functions or simple classes with minimal dependencies.
      • tools: Each file here implements the core logic for a specific MCP tool (aider_ai_code, list_models).
      • utils.py: Contains shared constants like default model names.
      • data_types.py: Defines Pydantic models for request/response structures, ensuring data validation.
      • logging.py: Sets up a consistent logging format for console and file output.
    • server.py: Orchestrates the MCP server. It initializes the server, registers the tools defined in the atoms/tools directory, handles incoming requests, routes them to the appropriate tool logic, and sends back responses according to the MCP protocol.
    • __main__.py: Provides the command-line interface entry point (aider-mcp-server), parsing arguments like --editor-model and starting the server defined in server.py.
    • tests: Contains tests mirroring the structure of the src directory, ensuring that each component (especially atoms) works as expected.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured