Discover Awesome MCP Servers

Extend your agent with 16,230 capabilities via MCP servers.

All16,230
mcp-prompt-engine

mcp-prompt-engine

MCP server for managing and serving dynamic prompt templates using elegant and powerful text template engine. Create reusable, logic-driven prompts with variables, partials, and conditionals that can be served to any compatible MCP client like Claude Code, Claude Desktop, Gemini CLI, etc.

Damn Vulnerable Model Context Protocol (DVMCP)

Damn Vulnerable Model Context Protocol (DVMCP)

Sebuah proyek pendidikan yang secara sengaja mengimplementasikan server MCP (Model Control Program) yang rentan untuk mendemonstrasikan berbagai risiko keamanan seperti injeksi perintah (prompt injection), peracunan alat (tool poisoning), dan eksekusi kode untuk melatih peneliti keamanan dan profesional keselamatan AI.

Code Screenshot Generator

Code Screenshot Generator

Enables generating beautiful syntax-highlighted code screenshots with professional themes directly from Claude. Supports file reading, line selection, git diff visualization, and batch processing across 20+ programming languages.

SQLite MCP Server

SQLite MCP Server

A universal SQLite database management tool that enables SQL query execution through MCP protocol. Supports SELECT/INSERT/UPDATE/DELETE/CREATE operations with built-in SQL injection protection across stdio, SSE, and streamable-http communication modes.

MCP Server Tester

MCP Server Tester

Job Searchoor MCP Server

Job Searchoor MCP Server

Server MCP sederhana yang memberikan Anda pekerjaan berdasarkan kebutuhan Anda.

MCP Character Counter

MCP Character Counter

A lightweight server that provides detailed text analysis, counting total characters, characters without spaces, letters, numbers, and symbols for AI assistants like Claude Desktop and GitHub Copilot.

GPT Image 1 MCP

GPT Image 1 MCP

A Model Context Protocol server that enables generating and editing images using OpenAI's gpt-image-1 model, allowing AI assistants to create and modify images from text prompts.

2025-04-02-mcp-server

2025-04-02-mcp-server

Kagi MCP

Kagi MCP

A Node.js implementation of the Kagi Model Context Protocol server that enables Claude AI to search the web and summarize documents, videos, and audio using Kagi's APIs.

Google Drive server

Google Drive server

Terintegrasi dengan Google Drive untuk memungkinkan daftar, membaca, dan mencari file, dengan ekspor otomatis dokumen Google Workspace ke format yang sesuai.

Paper MCP Server

Paper MCP Server

Enables AI assistants like Claude to interact with Paper's trading platform API using natural language, allowing users to manage accounts, portfolios, trades, and access market data through conversational requests.

Gladia MCP

Gladia MCP

Server Protokol Konteks Model Resmi yang memungkinkan interaksi dengan API Speech-to-Text dan Kecerdasan Audio yang canggih, memungkinkan klien seperti Claude Desktop untuk mentranskripsi audio, menganalisis ucapan, menerjemahkan konten, dan banyak lagi.

DOCX-MCP

DOCX-MCP

Enables comprehensive Microsoft Word document manipulation through the Model Context Protocol, with advanced table operations including creation, data management, formatting, and bulk operations. Supports document creation, editing, and saving with plans for full document content management.

MCP Worktree Voting Server

MCP Worktree Voting Server

Enables parallel implementation of tasks using git worktrees, allowing you to create multiple variants of a solution, evaluate them side-by-side, and select the best one.

Revit MCP Server

Revit MCP Server

Allows AI assistants to interact with Autodesk Revit through the MCP protocol, enabling the AI to create, modify, and delete elements in Revit projects.

Databricks MCP Server

Databricks MCP Server

Enables AI assistants like Claude to interact with Databricks workspaces through secure OAuth authentication, allowing users to execute SQL queries, manage clusters, create jobs, and access workspace resources through natural language.

mcp-server-gdrive

mcp-server-gdrive

gdrive mcp capable of upload

Remote Memory MCP Server

Remote Memory MCP Server

Manages knowledge graph data synchronized with GitHub repositories, enabling remote storage and collaboration of memory entities, relationships, and observations.

MCP Run Python

MCP Run Python

Enables secure execution of Python code in a sandboxed WebAssembly environment using Pyodide and Deno. Automatically handles package management and captures complete execution results including stdout, stderr, and return values.

Izawa MCP Server

Izawa MCP Server

Flint Note

Flint Note

Provides an agent-first note-taking system designed from the ground up for AI collaboration. Organizes your notes as a local vault of ordinary markdown files with semantic note types.

SureChEMBL MCP Server

SureChEMBL MCP Server

A comprehensive Model Context Protocol (MCP) server for accessing the SureChEMBL chemical patent database.

🚀 MCPverse

🚀 MCPverse

MCPverse adalah alat pencarian dan penemuan untuk server MCP (Model Context Provider) yang dihosting di GitHub. Alat ini memberi peringkat dan menampilkan repositori dengan konfigurasi klien dalam UI yang bersih dan interaktif.

INTERNAL TEST ONLY - will be ready soon

INTERNAL TEST ONLY - will be ready soon

Here are a few ways to set up a public MCP (Modelica Communication Protocol) server to run Modelica simulations, along with considerations for each: **1. Using OpenModelica (Recommended for Open Source and Flexibility)** * **OpenModelica Compiler (OMC) with MCP:** OpenModelica has built-in support for MCP. You can configure OMC to act as an MCP server. * **Steps:** 1. **Install OpenModelica:** Download and install the latest version of OpenModelica from [https://openmodelica.org/](https://openmodelica.org/). 2. **Start OMC in MCP Mode:** You'll typically do this from the command line. The exact command depends on your operating system and OpenModelica installation, but it will look something like this: ```bash omc +mcp ``` This starts the OpenModelica compiler in MCP mode, listening for connections on a default port (usually 5000). You can specify a different port using the `-port` option: ```bash omc +mcp -port=1234 ``` 3. **Firewall Configuration:** Crucially, you need to open the port you've specified (e.g., 5000 or 1234) in your server's firewall to allow external connections. This is a critical security consideration. 4. **Public IP Address:** Your server needs a public IP address that clients can use to connect. If your server is behind a router, you'll need to configure port forwarding on the router to forward traffic on the chosen port to your server's internal IP address. 5. **Security Considerations:** This is the most important part. Running an open MCP server is *inherently insecure* if not properly managed. Anyone who can connect to your server can execute arbitrary Modelica code, which can potentially be used to compromise your system. **Do not expose an MCP server directly to the internet without implementing strong security measures.** * **Authentication:** OpenModelica's MCP doesn't have built-in authentication. You'll need to implement your own authentication layer *outside* of OpenModelica. This could involve: * Using a reverse proxy (like Nginx or Apache) to handle authentication before forwarding requests to OMC. * Writing a custom script that intercepts MCP requests, authenticates the user, and then forwards the request to OMC if authentication is successful. * **Sandboxing:** Ideally, you should run OMC in a sandboxed environment (e.g., using Docker) to limit the damage that a malicious user could do. * **Resource Limits:** Set limits on the resources (CPU, memory, disk space) that OMC can use to prevent denial-of-service attacks. * **Rate Limiting:** Limit the number of requests that can be made to the server in a given time period. * **Regular Updates:** Keep OpenModelica updated to the latest version to patch security vulnerabilities. * **Example Client Code (Python):** ```python import socket def send_mcp_command(host, port, command): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect((host, port)) s.sendall(command.encode()) data = s.recv(1024) # Adjust buffer size as needed return data.decode() if __name__ == "__main__": host = "your_server_ip" # Replace with your server's IP address port = 5000 # Replace with the port you're using command = "loadModel(Modelica.Blocks.Examples.PID_Controller);" response = send_mcp_command(host, port, command) print(f"Received: {response}") ``` * **Advantages:** * Open Source: Free to use and modify. * Flexible: You have full control over the configuration and security. * Active Community: Good support and documentation. * **Disadvantages:** * Security: Requires significant effort to secure properly. This is *not* a task for beginners. * Complexity: Setting up and managing the server can be complex. **2. Using Dymola (Commercial Option)** * **Dymola with MCP:** Dymola also supports MCP. The setup is similar to OpenModelica, but the configuration details are specific to Dymola. Refer to the Dymola documentation for instructions. * **Advantages:** * Commercial Support: You get support from Dassault Systèmes. * Mature Tool: Dymola is a well-established Modelica simulation environment. * **Disadvantages:** * Cost: Dymola is a commercial product and requires a license. * Security: Still requires careful security considerations, although Dymola might have some built-in security features (check the documentation). **3. Using a Cloud-Based Solution (Potentially Easier, but Still Requires Security)** * **Deploy OpenModelica or Dymola on a Cloud Server (AWS, Azure, Google Cloud):** You can rent a virtual machine (VM) on a cloud platform and install OpenModelica or Dymola on it. This gives you more control over the server environment. * **Advantages:** * Scalability: Cloud platforms offer scalability, so you can easily increase resources if needed. * Infrastructure Management: The cloud provider handles much of the infrastructure management. * **Disadvantages:** * Cost: Cloud resources can be expensive. * Complexity: Still requires setting up and configuring the server. * Security: You are still responsible for securing the server and the MCP endpoint. Cloud providers offer security tools, but you need to configure them correctly. **Important Security Considerations (Repeated for Emphasis):** * **Never expose an MCP server directly to the internet without strong security measures.** * **Implement authentication.** * **Use sandboxing (e.g., Docker).** * **Set resource limits.** * **Implement rate limiting.** * **Keep your software updated.** * **Consider using a reverse proxy with authentication.** **In summary, setting up a public MCP server is a complex task that requires careful planning and execution, especially regarding security. If you are not experienced with server administration and security, it is strongly recommended to seek help from a qualified professional.** Here's the translation to Indonesian: **Cara Menyiapkan Server MCP Publik untuk Menjalankan Simulasi Modelica** Berikut adalah beberapa cara untuk menyiapkan server MCP (Modelica Communication Protocol) publik untuk menjalankan simulasi Modelica, beserta pertimbangan untuk masing-masing cara: **1. Menggunakan OpenModelica (Direkomendasikan untuk Sumber Terbuka dan Fleksibilitas)** * **OpenModelica Compiler (OMC) dengan MCP:** OpenModelica memiliki dukungan bawaan untuk MCP. Anda dapat mengonfigurasi OMC untuk bertindak sebagai server MCP. * **Langkah-langkah:** 1. **Instal OpenModelica:** Unduh dan instal versi terbaru OpenModelica dari [https://openmodelica.org/](https://openmodelica.org/). 2. **Jalankan OMC dalam Mode MCP:** Anda biasanya melakukan ini dari baris perintah. Perintah yang tepat tergantung pada sistem operasi dan instalasi OpenModelica Anda, tetapi akan terlihat seperti ini: ```bash omc +mcp ``` Ini memulai kompilator OpenModelica dalam mode MCP, mendengarkan koneksi pada port default (biasanya 5000). Anda dapat menentukan port yang berbeda menggunakan opsi `-port`: ```bash omc +mcp -port=1234 ``` 3. **Konfigurasi Firewall:** Sangat penting, Anda perlu membuka port yang telah Anda tentukan (misalnya, 5000 atau 1234) di firewall server Anda untuk mengizinkan koneksi eksternal. Ini adalah pertimbangan keamanan yang kritis. 4. **Alamat IP Publik:** Server Anda membutuhkan alamat IP publik yang dapat digunakan klien untuk terhubung. Jika server Anda berada di belakang router, Anda perlu mengonfigurasi penerusan port (port forwarding) pada router untuk meneruskan lalu lintas pada port yang dipilih ke alamat IP internal server Anda. 5. **Pertimbangan Keamanan:** Ini adalah bagian terpenting. Menjalankan server MCP terbuka *secara inheren tidak aman* jika tidak dikelola dengan benar. Siapa pun yang dapat terhubung ke server Anda dapat menjalankan kode Modelica arbitrer, yang berpotensi digunakan untuk membahayakan sistem Anda. **Jangan mengekspos server MCP langsung ke internet tanpa menerapkan langkah-langkah keamanan yang kuat.** * **Autentikasi:** MCP OpenModelica tidak memiliki autentikasi bawaan. Anda perlu menerapkan lapisan autentikasi Anda sendiri *di luar* OpenModelica. Ini bisa melibatkan: * Menggunakan reverse proxy (seperti Nginx atau Apache) untuk menangani autentikasi sebelum meneruskan permintaan ke OMC. * Menulis skrip khusus yang mencegat permintaan MCP, mengautentikasi pengguna, dan kemudian meneruskan permintaan ke OMC jika autentikasi berhasil. * **Sandboxing:** Idealnya, Anda harus menjalankan OMC di lingkungan sandbox (misalnya, menggunakan Docker) untuk membatasi kerusakan yang dapat dilakukan oleh pengguna jahat. * **Batas Sumber Daya:** Tetapkan batasan pada sumber daya (CPU, memori, ruang disk) yang dapat digunakan OMC untuk mencegah serangan penolakan layanan (denial-of-service). * **Pembatasan Laju (Rate Limiting):** Batasi jumlah permintaan yang dapat dibuat ke server dalam jangka waktu tertentu. * **Pembaruan Reguler:** Jaga agar OpenModelica tetap diperbarui ke versi terbaru untuk menambal kerentanan keamanan. * **Contoh Kode Klien (Python):** ```python import socket def send_mcp_command(host, port, command): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.connect((host, port)) s.sendall(command.encode()) data = s.recv(1024) # Sesuaikan ukuran buffer sesuai kebutuhan return data.decode() if __name__ == "__main__": host = "your_server_ip" # Ganti dengan alamat IP server Anda port = 5000 # Ganti dengan port yang Anda gunakan command = "loadModel(Modelica.Blocks.Examples.PID_Controller);" response = send_mcp_command(host, port, command) print(f"Diterima: {response}") ``` * **Keuntungan:** * Sumber Terbuka: Gratis untuk digunakan dan dimodifikasi. * Fleksibel: Anda memiliki kendali penuh atas konfigurasi dan keamanan. * Komunitas Aktif: Dukungan dan dokumentasi yang baik. * **Kekurangan:** * Keamanan: Membutuhkan upaya signifikan untuk mengamankan dengan benar. Ini *bukan* tugas untuk pemula. * Kompleksitas: Menyiapkan dan mengelola server bisa jadi rumit. **2. Menggunakan Dymola (Opsi Komersial)** * **Dymola dengan MCP:** Dymola juga mendukung MCP. Pengaturannya mirip dengan OpenModelica, tetapi detail konfigurasinya khusus untuk Dymola. Lihat dokumentasi Dymola untuk instruksi. * **Keuntungan:** * Dukungan Komersial: Anda mendapatkan dukungan dari Dassault Systèmes. * Alat yang Matang: Dymola adalah lingkungan simulasi Modelica yang mapan. * **Kekurangan:** * Biaya: Dymola adalah produk komersial dan membutuhkan lisensi. * Keamanan: Masih membutuhkan pertimbangan keamanan yang cermat, meskipun Dymola mungkin memiliki beberapa fitur keamanan bawaan (periksa dokumentasinya). **3. Menggunakan Solusi Berbasis Cloud (Potensial Lebih Mudah, tetapi Tetap Membutuhkan Keamanan)** * **Deploy OpenModelica atau Dymola di Server Cloud (AWS, Azure, Google Cloud):** Anda dapat menyewa mesin virtual (VM) di platform cloud dan menginstal OpenModelica atau Dymola di atasnya. Ini memberi Anda lebih banyak kendali atas lingkungan server. * **Keuntungan:** * Skalabilitas: Platform cloud menawarkan skalabilitas, sehingga Anda dapat dengan mudah meningkatkan sumber daya jika diperlukan. * Manajemen Infrastruktur: Penyedia cloud menangani sebagian besar manajemen infrastruktur. * **Kekurangan:** * Biaya: Sumber daya cloud bisa mahal. * Kompleksitas: Masih membutuhkan pengaturan dan konfigurasi server. * Keamanan: Anda masih bertanggung jawab untuk mengamankan server dan endpoint MCP. Penyedia cloud menawarkan alat keamanan, tetapi Anda perlu mengonfigurasinya dengan benar. **Pertimbangan Keamanan Penting (Diulang untuk Penekanan):** * **Jangan pernah mengekspos server MCP langsung ke internet tanpa langkah-langkah keamanan yang kuat.** * **Terapkan autentikasi.** * **Gunakan sandboxing (misalnya, Docker).** * **Tetapkan batas sumber daya.** * **Terapkan pembatasan laju (rate limiting).** * **Jaga agar perangkat lunak Anda tetap diperbarui.** * **Pertimbangkan untuk menggunakan reverse proxy dengan autentikasi.** **Singkatnya, menyiapkan server MCP publik adalah tugas yang kompleks yang membutuhkan perencanaan dan pelaksanaan yang cermat, terutama mengenai keamanan. Jika Anda tidak berpengalaman dengan administrasi server dan keamanan, sangat disarankan untuk mencari bantuan dari profesional yang berkualifikasi.**

Apple Health MCP Server

Apple Health MCP Server

A Model Context Protocol server that enables seamless interaction between LLM-based agents and Apple Health data, allowing users to query, analyze, and manage health records through natural language commands.

my-mcp-server

my-mcp-server

A Model Context Protocol server that allows integration with Claude Desktop by creating and managing custom tools that can be executed through the MCP framework.

SearchAPI MCP Agent

SearchAPI MCP Agent

A bridge between AI assistants and search services that implements A2A protocol and Model Context Protocol, enabling search functionality for web, videos, maps, flights, and hotels.

ADB MCP Server

ADB MCP Server

A TypeScript-based bridge between AI models and Android device functionality, enabling interaction with Android devices through ADB commands for tasks like app installation, file transfer, UI analysis, and shell command execution.

Model Hub MCP

Model Hub MCP

An MCP server that retrieves and provides AI model information from OpenAI, Anthropic, and Google through a unified interface.