GPT Image 1 MCP
A Model Context Protocol server that enables generating and editing images using OpenAI's gpt-image-1 model, allowing AI assistants to create and modify images from text prompts.
Tools
create_image
create_image_edit
README
<p align="center"> <img src="logo.png" alt="GPT Image 1 MCP Logo" width="200"/> </p>
<h1 align="center">@cloudwerxlab/gpt-image-1-mcp</h1>
<p align="center"> <a href="https://www.npmjs.com/package/@cloudwerxlab/gpt-image-1-mcp"><img src="https://img.shields.io/npm/v/@cloudwerxlab/gpt-image-1-mcp.svg" alt="npm version"></a> <a href="https://www.npmjs.com/package/@cloudwerxlab/gpt-image-1-mcp"><img src="https://img.shields.io/npm/dm/@cloudwerxlab/gpt-image-1-mcp.svg" alt="npm downloads"></a> <a href="https://github.com/CLOUDWERX-DEV/gpt-image-1-mcp/blob/main/LICENSE"><img src="https://img.shields.io/github/license/CLOUDWERX-DEV/gpt-image-1-mcp.svg" alt="license"></a> <a href="https://nodejs.org/"><img src="https://img.shields.io/node/v/@cloudwerxlab/gpt-image-1-mcp.svg" alt="node version"></a> <a href="https://cloudwerx.dev"><img src="https://img.shields.io/badge/website-cloudwerx.dev-blue" alt="Website"></a> </p>
<p align="center"> A Model Context Protocol (MCP) server for generating and editing images using the OpenAI <code>gpt-image-1</code> model. </p>
<p align="center"> <img src="https://img.shields.io/badge/OpenAI-GPT--Image--1-6E46AE" alt="OpenAI GPT-Image-1"> <img src="https://img.shields.io/badge/MCP-Compatible-00A3E0" alt="MCP Compatible"> </p>
🚀 Quick Start
<div align="center"> <a href="https://www.npmjs.com/package/@cloudwerxlab/gpt-image-1-mcp"><img src="https://img.shields.io/badge/NPX-Ready-red.svg" alt="NPX Ready"></a> </div>
<p align="center">Run this MCP server directly using NPX without installing it. <a href="https://www.npmjs.com/package/@cloudwerxlab/gpt-image-1-mcp">View on npm</a>.</p>
npx -y @cloudwerxlab/gpt-image-1-mcp
<p align="center">The <code>-y</code> flag automatically answers "yes" to any prompts that might appear during the installation process.</p>
📋 Prerequisites
<table> <tr> <td width="50%" align="center"> <img src="https://img.shields.io/badge/Node.js-v14+-339933?logo=node.js&logoColor=white" alt="Node.js v14+"> <p>Node.js (v14 or higher)</p> </td> <td width="50%" align="center"> <img src="https://img.shields.io/badge/OpenAI-API_Key-412991?logo=openai&logoColor=white" alt="OpenAI API Key"> <p>OpenAI API key with access to gpt-image-1</p> </td> </tr> </table>
🔑 Environment Variables
<table> <tr> <th>Variable</th> <th>Required</th> <th>Description</th> </tr> <tr> <td><code>OPENAI_API_KEY</code></td> <td>✅ Yes</td> <td>Your OpenAI API key with access to the gpt-image-1 model</td> </tr> <tr> <td><code>GPT_IMAGE_OUTPUT_DIR</code></td> <td>❌ No</td> <td>Custom directory for saving generated images (defaults to user's Pictures folder under <code>gpt-image-1</code> subfolder)</td> </tr> </table>
💻 Example Usage with NPX
<table> <tr> <th>Operating System</th> <th>Command Line Example</th> </tr> <tr> <td><strong>Linux/macOS</strong></td> <td>
# Set your OpenAI API key
export OPENAI_API_KEY=sk-your-openai-api-key
# Optional: Set custom output directory
export GPT_IMAGE_OUTPUT_DIR=/home/username/Pictures/ai-generated-images
# Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
</tr> <tr> <td><strong>Windows (PowerShell)</strong></td> <td>
# Set your OpenAI API key
$env:OPENAI_API_KEY = "sk-your-openai-api-key"
# Optional: Set custom output directory
$env:GPT_IMAGE_OUTPUT_DIR = "C:\Users\username\Pictures\ai-generated-images"
# Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
</tr> <tr> <td><strong>Windows (Command Prompt)</strong></td> <td>
:: Set your OpenAI API key
set OPENAI_API_KEY=sk-your-openai-api-key
:: Optional: Set custom output directory
set GPT_IMAGE_OUTPUT_DIR=C:\Users\username\Pictures\ai-generated-images
:: Run the server with NPX
npx -y @cloudwerxlab/gpt-image-1-mcp
</tr> </table>
🔌 Integration with MCP Clients
<div align="center"> <img src="https://img.shields.io/badge/VS_Code-MCP_Extension-007ACC?logo=visual-studio-code&logoColor=white" alt="VS Code MCP Extension"> <img src="https://img.shields.io/badge/Roo-Compatible-FF6B6B" alt="Roo Compatible"> <img src="https://img.shields.io/badge/Cursor-Compatible-4C2889" alt="Cursor Compatible"> <img src="https://img.shields.io/badge/Augment-Compatible-6464FF" alt="Augment Compatible"> <img src="https://img.shields.io/badge/Windsurf-Compatible-00B4D8" alt="Windsurf Compatible"> </div>
🛠️ Setting Up in an MCP Client
<table> <tr> <td> <h4>Step 1: Locate Settings File</h4> <ul> <li>For <strong>Roo</strong>: <code>c:\Users<username>\AppData\Roaming\Code\User\globalStorage\rooveterinaryinc.roo-cline\settings\mcp_settings.json</code></li> <li>For <strong>VS Code MCP Extension</strong>: Check your extension documentation for the settings file location</li> <li>For <strong>Cursor</strong>: <code>~/.config/cursor/mcp_settings.json</code> (Linux/macOS) or <code>%APPDATA%\Cursor\mcp_settings.json</code> (Windows)</li> <li>For <strong>Augment</strong>: <code>~/.config/augment/mcp_settings.json</code> (Linux/macOS) or <code>%APPDATA%\Augment\mcp_settings.json</code> (Windows)</li> <li>For <strong>Windsurf</strong>: <code>~/.config/windsurf/mcp_settings.json</code> (Linux/macOS) or <code>%APPDATA%\Windsurf\mcp_settings.json</code> (Windows)</li> </ul> </td> </tr> <tr> <td> <h4>Step 2: Add Configuration</h4> <p>Add the following configuration to the <code>mcpServers</code> object:</p> </td> </tr> </table>
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": [
"-y",
"@cloudwerxlab/gpt-image-1-mcp"
],
"env": {
"OPENAI_API_KEY": "PASTE YOUR OPEN-AI KEY HERE",
"GPT_IMAGE_OUTPUT_DIR": "OPTIONAL: PATH TO SAVE GENERATED IMAGES"
}
}
}
}
Example Configurations for Different Operating Systems
<table> <tr> <th>Operating System</th> <th>Example Configuration</th> </tr> <tr> <td><strong>Windows</strong></td> <td>
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "C:\\Users\\username\\Pictures\\ai-generated-images"
}
}
}
}
</tr> <tr> <td><strong>Linux/macOS</strong></td> <td>
{
"mcpServers": {
"gpt-image-1": {
"command": "npx",
"args": ["-y", "@cloudwerxlab/gpt-image-1-mcp"],
"env": {
"OPENAI_API_KEY": "sk-your-openai-api-key",
"GPT_IMAGE_OUTPUT_DIR": "/home/username/Pictures/ai-generated-images"
}
}
}
}
</tr> </table>
Note: For Windows paths, use double backslashes (
\\) to escape the backslash character in JSON. For Linux/macOS, use forward slashes (/).
✨ Features
<div align="center"> <table> <tr> <td align="center"> <h3>🎨 Core Tools</h3> <ul> <li><code>create_image</code>: Generate new images from text prompts</li> <li><code>create_image_edit</code>: Edit existing images with text prompts and masks</li> </ul> </td> <td align="center"> <h3>🚀 Key Benefits</h3> <ul> <li>Simple integration with MCP clients</li> <li>Full access to OpenAI's gpt-image-1 capabilities</li> <li>Streamlined workflow for AI image generation</li> </ul> </td> </tr> </table> </div>
💡 Enhanced Capabilities
<table> <tr> <td> <h4>📊 Output & Formatting</h4> <ul> <li>✅ <strong>Beautifully Formatted Output</strong>: Responses include emojis and detailed information</li> <li>✅ <strong>Automatic Image Saving</strong>: All generated images saved to disk for easy access</li> <li>✅ <strong>Detailed Token Usage</strong>: View token consumption for each request</li> </ul> </td> <td> <h4>⚙️ Configuration & Handling</h4> <ul> <li>✅ <strong>Configurable Output Directory</strong>: Customize where images are saved</li> <li>✅ <strong>File Path Support</strong>: Edit images using file paths instead of base64 encoding</li> <li>✅ <strong>Comprehensive Error Handling</strong>: Detailed error reporting with specific error codes, descriptions, and troubleshooting suggestions</li> </ul> </td> </tr> </table>
🔄 How It Works
<div align="center"> <table> <tr> <th align="center">🖼️ Image Generation</th> <th align="center">✏️ Image Editing</th> </tr> <tr> <td> <ol> <li>Server receives prompt and parameters</li> <li>Calls OpenAI API using gpt-image-1 model</li> <li>API returns base64-encoded images</li> <li>Server saves images to configured directory</li> <li>Returns formatted response with paths and metadata</li> </ol> </td> <td> <ol> <li>Server receives image, prompt, and optional mask</li> <li>For file paths, reads and prepares files for API</li> <li>Uses direct curl command for proper MIME handling</li> <li>API returns base64-encoded edited images</li> <li>Server saves images to configured directory</li> <li>Returns formatted response with paths and metadata</li> </ol> </td> </tr> </table> </div>
📁 Output Directory Behavior
<table> <tr> <td width="50%"> <h4>📂 Storage Location</h4> <ul> <li>🔹 <strong>Default Location</strong>: User's Pictures folder under <code>gpt-image-1</code> subfolder (e.g., <code>C:\Users\username\Pictures\gpt-image-1</code> on Windows)</li> <li>🔹 <strong>Custom Location</strong>: Set via <code>GPT_IMAGE_OUTPUT_DIR</code> environment variable</li> <li>🔹 <strong>Fallback Location</strong>: <code>./generated-images</code> (if Pictures folder can't be determined)</li> </ul> </td> <td width="50%"> <h4>🗂️ File Management</h4> <ul> <li>🔹 <strong>Directory Creation</strong>: Automatically creates output directory if it doesn't exist</li> <li>🔹 <strong>File Naming</strong>: Images saved with timestamped filenames (e.g., <code>image-2023-05-05T12-34-56-789Z.png</code>)</li> <li>🔹 <strong>Cross-Platform</strong>: Works on Windows, macOS, and Linux with appropriate Pictures folder detection</li> </ul> </td> </tr> </table>
Installation & Usage
NPM Package
This package is available on npm: @cloudwerxlab/gpt-image-1-mcp
You can install it globally:
npm install -g @cloudwerxlab/gpt-image-1-mcp
Or run it directly with npx as shown in the Quick Start section.
Tool: create_image
Generates a new image based on a text prompt.
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
prompt |
string | Yes | The text description of the image to generate (max 32,000 chars) |
size |
string | No | Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
quality |
string | No | Image quality: "high" (default), "medium", or "low" |
n |
integer | No | Number of images to generate (1-10, default: 1) |
background |
string | No | Background style: "transparent", "opaque", or "auto" (default) |
output_format |
string | No | Output format: "png" (default), "jpeg", or "webp" |
output_compression |
integer | No | Compression level (0-100, default: 0) |
user |
string | No | User identifier for OpenAI usage tracking |
moderation |
string | No | Moderation level: "low" or "auto" (default) |
Example
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image</tool_name>
<arguments>
{
"prompt": "A futuristic city skyline at sunset, digital art",
"size": "1024x1024",
"quality": "high",
"n": 1,
"background": "auto"
}
</arguments>
</use_mcp_tool>
Response
The tool returns:
- A formatted text message with details about the generated image(s)
- The image(s) as base64-encoded data
- Metadata including token usage and file paths
Tool: create_image_edit
Edits an existing image based on a text prompt and optional mask.
Parameters
| Parameter | Type | Required | Description |
|---|---|---|---|
image |
string, object, or array | Yes | The image(s) to edit (base64 string or file path object) |
prompt |
string | Yes | The text description of the desired edit (max 32,000 chars) |
mask |
string or object | No | The mask that defines areas to edit (base64 string or file path object) |
size |
string | No | Image size: "1024x1024" (default), "1536x1024", or "1024x1536" |
quality |
string | No | Image quality: "high" (default), "medium", or "low" |
n |
integer | No | Number of images to generate (1-10, default: 1) |
background |
string | No | Background style: "transparent", "opaque", or "auto" (default) |
user |
string | No | User identifier for OpenAI usage tracking |
Example with Base64 Encoded Image
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image_edit</tool_name>
<arguments>
{
"image": "BASE64_ENCODED_IMAGE_STRING",
"prompt": "Add a small robot in the corner",
"mask": "BASE64_ENCODED_MASK_STRING",
"quality": "high"
}
</arguments>
</use_mcp_tool>
Example with File Path
<use_mcp_tool>
<server_name>gpt-image-1</server_name>
<tool_name>create_image_edit</tool_name>
<arguments>
{
"image": {
"filePath": "C:/path/to/your/image.png"
},
"prompt": "Add a small robot in the corner",
"mask": {
"filePath": "C:/path/to/your/mask.png"
},
"quality": "high"
}
</arguments>
</use_mcp_tool>
Response
The tool returns:
- A formatted text message with details about the edited image(s)
- The edited image(s) as base64-encoded data
- Metadata including token usage and file paths
🔧 Troubleshooting
<div align="center"> <img src="https://img.shields.io/badge/Support-Available-brightgreen" alt="Support Available"> </div>
🚨 Common Issues
<table> <tr> <th align="center">Issue</th> <th align="center">Solution</th> </tr> <tr> <td> <h4>🖼️ MIME Type Errors</h4> <p>Errors related to image format or MIME type handling</p> </td> <td> <p>Ensure image files have the correct extension (.png, .jpg, etc.) that matches their actual format. The server uses file extensions to determine MIME types.</p> </td> </tr> <tr> <td> <h4>🔑 API Key Issues</h4> <p>Authentication errors with OpenAI API</p> </td> <td> <p>Verify your OpenAI API key is correct and has access to the gpt-image-1 model. Check for any spaces or special characters that might have been accidentally included.</p> </td> </tr> <tr> <td> <h4>🛠️ Build Errors</h4> <p>Issues when building from source</p> </td> <td> <p>Ensure you have the correct TypeScript version installed (v5.3.3 or compatible) and that your <code>tsconfig.json</code> is properly configured. Run <code>npm install</code> to ensure all dependencies are installed.</p> </td> </tr> <tr> <td> <h4>📁 Output Directory Issues</h4> <p>Problems with saving generated images</p> </td> <td> <p>Check if the process has write permissions to the configured output directory. Try using an absolute path for <code>GPT_IMAGE_OUTPUT_DIR</code> if relative paths aren't working.</p> </td> </tr> </table>
🔍 Error Handling and Reporting
The MCP server includes comprehensive error handling that provides detailed information when something goes wrong. When an error occurs:
-
Error Format: All errors are returned with:
- A clear error message describing what went wrong
- The specific error code or type
- Additional context about the error when available
-
AI Assistant Behavior: When using this MCP server with AI assistants:
- The AI will always report the full error message to help with troubleshooting
- The AI will explain the likely cause of the error in plain language
- The AI will suggest specific steps to resolve the issue
📄 License
<div align="center"> <a href="LICENSE"><img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="MIT License"></a> </div>
<p align="center"> This project is licensed under the MIT License - see the <a href="LICENSE">LICENSE</a> file for details. </p>
<details> <summary>License Summary</summary>
<p>The MIT License is a permissive license that is short and to the point. It lets people do anything with your code with proper attribution and without warranty.</p>
<p><strong>You are free to:</strong></p> <ul> <li>Use the software commercially</li> <li>Modify the software</li> <li>Distribute the software</li> <li>Use and modify the software privately</li> </ul>
<p><strong>Under the following terms:</strong></p> <ul> <li>Include the original copyright notice and the license notice in all copies or substantial uses of the work</li> </ul>
<p><strong>Limitations:</strong></p> <ul> <li>The authors provide no warranty with the software and are not liable for any damages</li> </ul> </details>
🙏 Acknowledgments
<div align="center"> <table> <tr> <td align="center"> <a href="https://openai.com/"> <img src="https://img.shields.io/badge/OpenAI-412991?logo=openai&logoColor=white" alt="OpenAI"> <p>For providing the gpt-image-1 model</p> </a> </td> <td align="center"> <a href="https://github.com/model-context-protocol/mcp"> <img src="https://img.shields.io/badge/MCP-Protocol-00A3E0" alt="MCP Protocol"> <p>For the protocol specification</p> </a> </td> </tr> </table> </div>
<div align="center"> <p> <a href="https://github.com/CLOUDWERX-DEV/gpt-image-1-mcp/issues">Report Bug</a> • <a href="https://github.com/CLOUDWERX-DEV/gpt-image-1-mcp/issues">Request Feature</a> • <a href="https://cloudwerx.dev">Visit Our Website</a> </p> </div>
<div align="center"> <p> Developed with ❤️ by <a href="https://cloudwerx.dev">CLOUDWERX</a> </p> </div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.