Model Hub MCP
An MCP server that retrieves and provides AI model information from OpenAI, Anthropic, and Google through a unified interface.
README
model-hub-mcp
An MCP (Model Context Protocol) server that fetches AI model information from OpenAI, Anthropic, and Google.
Features
- Multi-provider Support: Supports three providers - OpenAI, Anthropic, and Google AI
- List Models: Retrieve a list of available models from each provider
- Get Model Details: Fetch detailed information about specific models
- Unified Retrieval: Batch fetch model information from all configured providers
Quick Start (npx)
# Run with environment variables
OPENAI_API_KEY=your_key npx @akiojin/model-hub-mcp
Note: The package will be downloaded from npm on first run.
Installation
Global Installation
npm install -g @akiojin/model-hub-mcp
Local Installation
npm install @akiojin/model-hub-mcp
Configuration
- Copy
.env.exampleto.env:
cp .env.example .env
- Set API keys for each provider in the
.envfile:
OPENAI_API_KEY=your_openai_api_key_here
ANTHROPIC_API_KEY=your_anthropic_api_key_here
GOOGLE_API_KEY=your_google_api_key_here
Note: You can leave API keys empty for providers you don't plan to use.
Build
Compile TypeScript code:
npm run build
Usage
Start as MCP server:
npm start
Development mode (run TypeScript directly):
npm run dev
Available Tools
list_models
Retrieve a list of available models from a specific provider.
Parameters:
provider: "openai" | "anthropic" | "google"
get_model
Fetch detailed information about a specific model.
Parameters:
provider: "openai" | "anthropic" | "google"model_id: Model ID (e.g., "gpt-4", "claude-3-opus", "gemini-pro")
list_all_models
Batch fetch model information from all configured providers.
MCP Client Configuration Examples
Using npx
{
"mcpServers": {
"model-hub": {
"command": "npx",
"args": ["@akiojin/model-hub-mcp"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key"
}
}
}
}
After Global Installation
{
"mcpServers": {
"model-hub": {
"command": "model-hub-mcp",
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key"
}
}
}
}
After Local Installation
{
"mcpServers": {
"model-hub": {
"command": "node",
"args": ["node_modules/@akiojin/model-hub-mcp/dist/index.js"],
"env": {
"OPENAI_API_KEY": "your_openai_api_key",
"ANTHROPIC_API_KEY": "your_anthropic_api_key",
"GOOGLE_API_KEY": "your_google_api_key"
}
}
}
}
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.