Discover Awesome MCP Servers

Extend your agent with 16,167 capabilities via MCP servers.

All16,167
Remote MCP Server on Cloudflare

Remote MCP Server on Cloudflare

Git Stuff Server

Git Stuff Server

MCP server providing Git-related functionalities, primarily a tool to generate diffs for Git merge commits against their first parent.

MCP Template

MCP Template

A TypeScript template for building Model Context Protocol servers that provides a structured foundation with automated tools, testing, and synchronization capabilities.

Graylog MCP Server

Graylog MCP Server

Enables AI assistants to query and analyze logs from Graylog instances using universal search with relative or absolute time windows, supporting both full result retrieval and lightweight count-only queries.

MCP-dev

MCP-dev

Custom MCP tools for local development that enable file system access, shell command execution, and web resource browsing. Designed for local use with safety considerations for potentially destructive operations.

Google Docs MCP Server

Google Docs MCP Server

A Model Context Protocol server that provides an interface for AI models to interact with Google Docs, enabling reading, creating, updating, and searching Google Documents.

Currency Converter MCP

Currency Converter MCP

An MCP server providing real-time currency conversion and exchange rate data through the Frankfurter API, enabling users to convert currencies, fetch latest or historical rates, and list available currencies.

Neurosift Mcps

Neurosift Mcps

Here are some MCP (Multi-Compute Pipeline) server options for Neuroglancer/Neurosift, along with some considerations: **1. Google Cloud Platform (GCP) - Recommended for Scalability and Integration** * **Why it's good:** * **Scalability:** GCP is designed for handling large datasets and high traffic. You can easily scale your compute resources as needed. * **Integration:** Neurosift is often used with data stored in Google Cloud Storage (GCS). Using GCP for your MCP server simplifies data access and reduces latency. * **Managed Services:** GCP offers managed services like Google Kubernetes Engine (GKE) and Cloud Functions that can simplify deployment and management. * **Cost-Effective:** With proper configuration and autoscaling, GCP can be cost-effective, especially for variable workloads. * **How to set it up (General Outline):** 1. **Create a GCP Project:** If you don't already have one. 2. **Set up a Compute Instance (VM):** Choose a VM with sufficient CPU, memory, and disk space for your needs. Consider using a preemptible VM to save costs (but be aware that it can be terminated). Install the necessary software (Python, Neurosift dependencies, etc.). 3. **Containerization (Docker):** It's highly recommended to containerize your MCP server using Docker. This makes deployment and management much easier. Create a `Dockerfile` that defines your server's environment. 4. **Deployment Options:** * **Direct VM Deployment:** You can run the Docker container directly on the VM. Use `docker run` to start the container. * **Google Kubernetes Engine (GKE):** GKE is a managed Kubernetes service that allows you to deploy and manage your MCP server as a containerized application. This is a good option for more complex deployments or when you need to scale your server. * **Cloud Functions:** For very simple MCP tasks, you *might* be able to use Cloud Functions, but this is less common for Neurosift due to the resource limitations and execution time constraints. 5. **Configure Firewall Rules:** Allow traffic to your MCP server on the appropriate port (e.g., 8080). 6. **Set up a Domain Name (Optional):** If you want to access your MCP server using a custom domain name, you'll need to configure DNS records. 7. **Security:** Implement appropriate security measures, such as using HTTPS and restricting access to your server. * **Example Dockerfile (Simplified):** ```dockerfile FROM python:3.9-slim-buster WORKDIR /app # Install dependencies COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt # Copy your MCP server code COPY . . # Expose the port your server listens on EXPOSE 8080 # Command to run the server CMD ["python", "your_mcp_server.py"] ``` * **Example `requirements.txt`:** ``` neurosift numpy # Add any other dependencies your server needs ``` **2. Amazon Web Services (AWS)** * **Why it's good:** Similar to GCP, AWS offers excellent scalability, a wide range of services, and good integration with other AWS services. * **How to set it up:** The process is very similar to GCP, but you'll use AWS equivalents: * **EC2:** For virtual machines (similar to GCP Compute Engine). * **Elastic Container Service (ECS) or Elastic Kubernetes Service (EKS):** For container orchestration (similar to GKE). * **Lambda:** For serverless functions (similar to Cloud Functions, but less likely to be suitable for most Neurosift MCP servers). * **S3:** For object storage (similar to GCS). **3. Microsoft Azure** * **Why it's good:** Another major cloud provider with similar capabilities to GCP and AWS. * **How to set it up:** Again, the process is similar, using Azure equivalents: * **Virtual Machines:** For virtual machines. * **Azure Kubernetes Service (AKS):** For container orchestration. * **Azure Functions:** For serverless functions. * **Azure Blob Storage:** For object storage. **4. Your Own Server (On-Premise or Dedicated Server)** * **Why it might be good:** * **Control:** You have complete control over the hardware and software. * **Cost (Potentially):** If you already have the hardware, it might be cheaper in the short term. * **Why it might *not* be good:** * **Maintenance:** You're responsible for all maintenance, security updates, and troubleshooting. * **Scalability:** Scaling can be difficult and time-consuming. * **Reliability:** You need to ensure the server is reliable and has adequate backup and redundancy. * **How to set it up:** 1. **Install the Operating System:** Choose a Linux distribution (e.g., Ubuntu, Debian, CentOS). 2. **Install Dependencies:** Install Python, Neurosift dependencies, and any other required software. 3. **Configure the Server:** Set up firewall rules, configure networking, and secure the server. 4. **Deploy Your MCP Server:** Run your MCP server code. Consider using a process manager like `systemd` or `supervisor` to ensure the server restarts automatically if it crashes. **Key Considerations for Choosing an MCP Server:** * **Data Location:** Where is your data stored (e.g., GCS, S3, local storage)? Choose an MCP server that is close to your data to minimize latency. * **Workload:** How much compute power do you need? How variable is your workload? If your workload is highly variable, a cloud-based solution with autoscaling is a good choice. * **Cost:** Compare the costs of different options, including compute, storage, and networking. Consider using preemptible VMs or spot instances to save costs. * **Complexity:** How comfortable are you with managing servers and infrastructure? A managed service like GKE or ECS can simplify deployment and management. * **Security:** Implement appropriate security measures to protect your data and server. **Important Notes:** * **Neurosift Documentation:** Refer to the official Neurosift documentation for the most up-to-date information and best practices. The documentation may have specific recommendations for MCP server setup. * **MCP Server Code:** You'll need to write the code for your MCP server. This code will handle requests from Neurosift and perform the necessary computations. The complexity of this code will depend on the specific tasks you need to perform. * **Example Code:** Look for example MCP server code in the Neurosift documentation or online. This can provide a starting point for your own server. * **Testing:** Thoroughly test your MCP server to ensure it is working correctly and can handle the expected load. **Translation to Indonesian:** Berikut adalah beberapa opsi server MCP (Multi-Compute Pipeline) untuk Neuroglancer/Neurosift, beserta beberapa pertimbangan: **1. Google Cloud Platform (GCP) - Direkomendasikan untuk Skalabilitas dan Integrasi** * **Mengapa bagus:** * **Skalabilitas:** GCP dirancang untuk menangani dataset besar dan lalu lintas tinggi. Anda dapat dengan mudah menskalakan sumber daya komputasi Anda sesuai kebutuhan. * **Integrasi:** Neurosift sering digunakan dengan data yang disimpan di Google Cloud Storage (GCS). Menggunakan GCP untuk server MCP Anda menyederhanakan akses data dan mengurangi latensi. * **Layanan Terkelola:** GCP menawarkan layanan terkelola seperti Google Kubernetes Engine (GKE) dan Cloud Functions yang dapat menyederhanakan penyebaran dan pengelolaan. * **Hemat Biaya:** Dengan konfigurasi dan penskalaan otomatis yang tepat, GCP bisa hemat biaya, terutama untuk beban kerja yang bervariasi. * **Cara menyiapkan (Garis Besar Umum):** 1. **Buat Proyek GCP:** Jika Anda belum memilikinya. 2. **Siapkan Instance Komputasi (VM):** Pilih VM dengan CPU, memori, dan ruang disk yang cukup untuk kebutuhan Anda. Pertimbangkan untuk menggunakan VM preemptible untuk menghemat biaya (tetapi ketahui bahwa VM tersebut dapat dihentikan). Instal perangkat lunak yang diperlukan (Python, dependensi Neurosift, dll.). 3. **Kontainerisasi (Docker):** Sangat disarankan untuk mengontainerisasi server MCP Anda menggunakan Docker. Ini membuat penyebaran dan pengelolaan jauh lebih mudah. Buat `Dockerfile` yang mendefinisikan lingkungan server Anda. 4. **Opsi Penyebaran:** * **Penyebaran VM Langsung:** Anda dapat menjalankan kontainer Docker langsung di VM. Gunakan `docker run` untuk memulai kontainer. * **Google Kubernetes Engine (GKE):** GKE adalah layanan Kubernetes terkelola yang memungkinkan Anda menyebarkan dan mengelola server MCP Anda sebagai aplikasi yang dikontainerisasi. Ini adalah pilihan yang baik untuk penyebaran yang lebih kompleks atau ketika Anda perlu menskalakan server Anda. * **Cloud Functions:** Untuk tugas MCP yang sangat sederhana, Anda *mungkin* dapat menggunakan Cloud Functions, tetapi ini kurang umum untuk Neurosift karena keterbatasan sumber daya dan batasan waktu eksekusi. 5. **Konfigurasikan Aturan Firewall:** Izinkan lalu lintas ke server MCP Anda pada port yang sesuai (misalnya, 8080). 6. **Siapkan Nama Domain (Opsional):** Jika Anda ingin mengakses server MCP Anda menggunakan nama domain khusus, Anda perlu mengonfigurasi catatan DNS. 7. **Keamanan:** Terapkan langkah-langkah keamanan yang sesuai, seperti menggunakan HTTPS dan membatasi akses ke server Anda. * **Contoh Dockerfile (Disederhanakan):** ```dockerfile FROM python:3.9-slim-buster WORKDIR /app # Instal dependensi COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt # Salin kode server MCP Anda COPY . . # Ekspos port tempat server Anda mendengarkan EXPOSE 8080 # Perintah untuk menjalankan server CMD ["python", "your_mcp_server.py"] ``` * **Contoh `requirements.txt`:** ``` neurosift numpy # Tambahkan dependensi lain yang dibutuhkan server Anda ``` **2. Amazon Web Services (AWS)** * **Mengapa bagus:** Mirip dengan GCP, AWS menawarkan skalabilitas yang sangat baik, berbagai layanan, dan integrasi yang baik dengan layanan AWS lainnya. * **Cara menyiapkan:** Prosesnya sangat mirip dengan GCP, tetapi Anda akan menggunakan padanan AWS: * **EC2:** Untuk mesin virtual (mirip dengan GCP Compute Engine). * **Elastic Container Service (ECS) atau Elastic Kubernetes Service (EKS):** Untuk orkestrasi kontainer (mirip dengan GKE). * **Lambda:** Untuk fungsi tanpa server (mirip dengan Cloud Functions, tetapi kurang mungkin cocok untuk sebagian besar server MCP Neurosift). * **S3:** Untuk penyimpanan objek (mirip dengan GCS). **3. Microsoft Azure** * **Mengapa bagus:** Penyedia cloud utama lainnya dengan kemampuan serupa dengan GCP dan AWS. * **Cara menyiapkan:** Sekali lagi, prosesnya serupa, menggunakan padanan Azure: * **Virtual Machines:** Untuk mesin virtual. * **Azure Kubernetes Service (AKS):** Untuk orkestrasi kontainer. * **Azure Functions:** Untuk fungsi tanpa server. * **Azure Blob Storage:** Untuk penyimpanan objek. **4. Server Anda Sendiri (On-Premise atau Server Dedicated)** * **Mengapa mungkin bagus:** * **Kontrol:** Anda memiliki kontrol penuh atas perangkat keras dan perangkat lunak. * **Biaya (Potensial):** Jika Anda sudah memiliki perangkat keras, mungkin lebih murah dalam jangka pendek. * **Mengapa mungkin *tidak* bagus:** * **Pemeliharaan:** Anda bertanggung jawab atas semua pemeliharaan, pembaruan keamanan, dan pemecahan masalah. * **Skalabilitas:** Penskalaan bisa sulit dan memakan waktu. * **Keandalan:** Anda perlu memastikan server andal dan memiliki cadangan dan redundansi yang memadai. * **Cara menyiapkan:** 1. **Instal Sistem Operasi:** Pilih distribusi Linux (misalnya, Ubuntu, Debian, CentOS). 2. **Instal Dependensi:** Instal Python, dependensi Neurosift, dan perangkat lunak lain yang diperlukan. 3. **Konfigurasikan Server:** Siapkan aturan firewall, konfigurasikan jaringan, dan amankan server. 4. **Sebarkan Server MCP Anda:** Jalankan kode server MCP Anda. Pertimbangkan untuk menggunakan pengelola proses seperti `systemd` atau `supervisor` untuk memastikan server dimulai ulang secara otomatis jika terjadi crash. **Pertimbangan Utama untuk Memilih Server MCP:** * **Lokasi Data:** Di mana data Anda disimpan (misalnya, GCS, S3, penyimpanan lokal)? Pilih server MCP yang dekat dengan data Anda untuk meminimalkan latensi. * **Beban Kerja:** Berapa banyak daya komputasi yang Anda butuhkan? Seberapa bervariasi beban kerja Anda? Jika beban kerja Anda sangat bervariasi, solusi berbasis cloud dengan penskalaan otomatis adalah pilihan yang baik. * **Biaya:** Bandingkan biaya opsi yang berbeda, termasuk komputasi, penyimpanan, dan jaringan. Pertimbangkan untuk menggunakan VM preemptible atau instance spot untuk menghemat biaya. * **Kompleksitas:** Seberapa nyaman Anda mengelola server dan infrastruktur? Layanan terkelola seperti GKE atau ECS dapat menyederhanakan penyebaran dan pengelolaan. * **Keamanan:** Terapkan langkah-langkah keamanan yang sesuai untuk melindungi data dan server Anda. **Catatan Penting:** * **Dokumentasi Neurosift:** Lihat dokumentasi Neurosift resmi untuk informasi terbaru dan praktik terbaik. Dokumentasi mungkin memiliki rekomendasi khusus untuk pengaturan server MCP. * **Kode Server MCP:** Anda perlu menulis kode untuk server MCP Anda. Kode ini akan menangani permintaan dari Neurosift dan melakukan perhitungan yang diperlukan. Kompleksitas kode ini akan bergantung pada tugas spesifik yang perlu Anda lakukan. * **Contoh Kode:** Cari contoh kode server MCP dalam dokumentasi Neurosift atau online. Ini dapat memberikan titik awal untuk server Anda sendiri. * **Pengujian:** Uji secara menyeluruh server MCP Anda untuk memastikan server berfungsi dengan benar dan dapat menangani beban yang diharapkan.

IntelliDiff MCP Server

IntelliDiff MCP Server

Enables intelligent file and folder comparison with advanced text normalization, duplicate detection, and line-level diff analysis. Provides secure workspace-constrained file operations with CRC32-based exact matching and smart text comparison capabilities.

Gemini MCP Server

Gemini MCP Server

A Model Context Protocol server that enables Claude to collaborate with Google's Gemini AI models, providing tools for question answering, code review, brainstorming, test generation, and explanations.

Django Firebase MCP

Django Firebase MCP

A Django app that implements Firebase Model Context Protocol server, enabling AI agents to interact with Firebase services (Authentication, Firestore Database, Cloud Storage) through a standardized protocol.

NPM Helper MCP

NPM Helper MCP

A Model Context Protocol server that provides tools for NPM package management, including dependency searching, updates, conflict resolution, and version management to help AI assistants safely upgrade project dependencies.

Weather MCP Server

Weather MCP Server

Provides weather forecast and alert information from the National Weather Service API, allowing users to query weather forecasts by coordinates and check weather alerts by state.

Boilerplate MCP Server

Boilerplate MCP Server

A production-ready foundation for developing custom Model Context Protocol (MCP) servers in TypeScript with a complete layered architecture pattern. Includes a working IP geolocation example and comprehensive developer infrastructure to connect AI assistants with external APIs and data sources.

OpenAI SDK Knowledge MCP Server

OpenAI SDK Knowledge MCP Server

An MCP server that provides deep knowledge about OpenAI APIs and SDKs, enabling users to query technical information through various MCP clients including ChatGPT Deep Research, Cursor, and OpenAI Responses API.

Exact Online MCP Server by CData

Exact Online MCP Server by CData

This read-only MCP Server allows you to connect to Exact Online data from Claude Desktop through CData JDBC Drivers. Free (beta) read/write servers available at https://www.cdata.com/solutions/mcp

MCP Servers

MCP Servers

Berbagi apa yang telah saya pelajari tentang server MCP di Mac OS X.

Financial Modeling Prep MCP Server

Financial Modeling Prep MCP Server

GitHub Integrated MCP Server

GitHub Integrated MCP Server

A Model Context Protocol server with GitHub API integration that enables interaction with repositories, issues, pull requests, and file management through a standardized interface.

PAN-OS MCP Server

PAN-OS MCP Server

Server MCP PAN-OS (API XML)

DSP Booking MCP Server

DSP Booking MCP Server

Enables booking flow operations through a DSP (Demand-Side Platform) API with OAuth authentication. Provides a proof-of-concept integration for managing DSP booking workflows through natural language interactions.

MCP Server Doppler

MCP Server Doppler

A Model Context Protocol server that provides secure access to Doppler's secret management platform, allowing AI assistants to manage secrets, environment variables, and configurations through Doppler's API.

MCP-ODOS

MCP-ODOS

A Model Context Protocol server that enables AI assistants and applications to interact with decentralized exchanges (DEXs), allowing users to get quotes for token swaps and execute swap transactions.

vibase

vibase

Easily query and mutate Postgres data using MCP. This is an open source project.

GraphRAG MCP

GraphRAG MCP

Enables enterprise document retrieval using graph-based reasoning and knowledge graphs. Allows agents to search and extract information from scattered documents through structured entity and relationship extraction.

BIG-IP MCP Server

BIG-IP MCP Server

Enables management of F5 BIG-IP load balancers through secure authentication and configuration queries. Supports multiple devices with token caching, allowing users to list virtual servers and device configurations through natural language.

Translation MCP Server

Translation MCP Server

An AI-driven text translation service supporting 20+ languages, based on the Model Context Protocol (MCP) for integration with Claude Desktop and other MCP-compatible applications.

DOCX MCP Server

DOCX MCP Server

Enables creation, editing, and management of Word documents through JSON schema with support for rich content including text formatting, tables, images, code blocks, and lists. Provides comprehensive DOCX operations including opening existing documents, modifying content, and saving files to disk.

Building AI-Powered Applications with Spring AI and Model Context Protocol

Building AI-Powered Applications with Spring AI and Model Context Protocol

Spring ai and Reactjs Based Proof of Concept of a Server Hosted MCP Client + MCP Server solution available for natural language interaction

Native_MCP

Native_MCP

An extensible Model Context Protocol server that enables AI assistants like Claude to generate React Native components and perform development tasks through a standardized interface.