Gemini MCP Server
A Model Context Protocol server that enables Claude to collaborate with Google's Gemini AI models, providing tools for question answering, code review, brainstorming, test generation, and explanations.
README
Gemini MCP Server
A Model Context Protocol (MCP) server that enables Claude to collaborate with Google's Gemini AI models.
Features
- 🤖 Multiple Gemini Tools: Ask questions, review code, brainstorm ideas, generate tests, and get explanations
- 🔄 Dual-Model Support: Automatic fallback from experimental to stable models
- ⚡ Configurable Models: Easy switching between different Gemini variants
- 🛡️ Reliable: Never lose functionality with automatic model fallback
- 📊 Transparent: Shows which model was used for each response
Quick Start
1. Prerequisites
- Python 3.8+
- Claude Desktop
- Google AI API Key
2. Installation
# Clone the repository
git clone https://github.com/lbds137/gemini-mcp-server.git
cd gemini-mcp-server
# Install dependencies
pip install -r requirements.txt
# Copy and configure environment
cp .env.example .env
# Edit .env and add your GEMINI_API_KEY
3. Configuration
Edit .env to configure your models:
# Your Gemini API key (required)
GEMINI_API_KEY=your_api_key_here
# Model configuration (optional - defaults shown)
GEMINI_MODEL_PRIMARY=gemini-2.5-pro-preview-06-05
GEMINI_MODEL_FALLBACK=gemini-1.5-pro
GEMINI_MODEL_TIMEOUT=10000
4. Development Setup
For development with PyCharm or other IDEs:
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install in development mode
pip install -e .
# Run tests
python -m pytest
5. Register with Claude
# Install to MCP location
./scripts/install.sh
# Or manually register
claude mcp add gemini-collab python3 ~/.claude-mcp-servers/gemini-collab/server.py
Available Tools
ask_gemini
General questions and problem-solving assistance.
gemini_code_review
Get code review feedback focusing on security, performance, and best practices.
gemini_brainstorm
Collaborative brainstorming for architecture and design decisions.
gemini_test_cases
Generate comprehensive test scenarios for your code.
gemini_explain
Get clear explanations of complex code or concepts.
server_info
Check server status and model configuration.
Model Configurations
Best Quality (Default)
GEMINI_MODEL_PRIMARY=gemini-2.5-pro-preview-06-05
GEMINI_MODEL_FALLBACK=gemini-1.5-pro
Best Performance
GEMINI_MODEL_PRIMARY=gemini-2.5-flash-preview-05-20
GEMINI_MODEL_FALLBACK=gemini-2.0-flash
Most Cost-Effective
GEMINI_MODEL_PRIMARY=gemini-2.0-flash
GEMINI_MODEL_FALLBACK=gemini-2.0-flash-lite
Development
Project Structure
gemini-mcp-server/
├── src/
│ └── gemini_mcp/
│ ├── __init__.py
│ └── server.py # Main server with DualModelManager
├── tests/
│ └── test_server.py
├── scripts/
│ ├── install.sh # Quick installation script
│ ├── update.sh # Update deployment script
│ └── dev-link.sh # Development symlink script
├── docs/
│ └── BUILD_YOUR_OWN_MCP_SERVER.md
├── .claude/
│ └── settings.json # Claude Code permissions
├── .env # Your configuration (git-ignored)
├── .env.example # Example configuration
├── .gitignore
├── CLAUDE.md # Instructions for Claude Code
├── LICENSE
├── README.md # This file
├── docs/
│ ├── BUILD_YOUR_OWN_MCP_SERVER.md
│ ├── DUAL_MODEL_CONFIGURATION.md # Dual-model setup guide
│ ├── PYCHARM_SETUP.md
│ └── TESTING.md
├── requirements.txt
├── setup.py
├── package.json # MCP registration metadata
└── package-lock.json
Running Tests
python -m pytest tests/ -v
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Updating
To update your local MCP installation after making changes:
./scripts/update.sh
This will copy the latest version to your MCP servers directory.
Troubleshooting
Server not found
# Check registration
claude mcp list
# Re-register if needed
./scripts/install.sh
API Key Issues
# Verify environment variable
echo $GEMINI_API_KEY
# Test directly
python -c "import google.generativeai as genai; genai.configure(api_key='$GEMINI_API_KEY'); print('✅ API key works')"
Model Availability
Some models may not be available in all regions. Check the fallback model in logs if primary fails consistently.
License
MIT License - see LICENSE file for details.
Acknowledgments
- Built for Claude using the Model Context Protocol
- Powered by Google's Gemini AI
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.