Django Firebase MCP

Django Firebase MCP

A Django app that implements Firebase Model Context Protocol server, enabling AI agents to interact with Firebase services (Authentication, Firestore Database, Cloud Storage) through a standardized protocol.

Category
Visit Server

README

Django Firebase MCP

A comprehensive Django app that implements Firebase Model Context Protocol (MCP) server, enabling AI agents to interact with Firebase services through a standardized protocol.

🚀 Quick Start

Get up and running in under 5 minutes with the standalone Firebase agent for testing.

Prerequisites

  • Python 3.11+
  • Firebase project with Admin SDK
  • Git (optional)

1. Clone & Setup

git clone https://github.com/your-repo/django-firebase-mcp.git
cd django-firebase-mcp

2. Install Dependencies

pip install -r requirements.txt

3. Firebase Setup

Get Firebase Credentials

  1. Go to Firebase Console
  2. Select your project (or create a new one)
  3. Navigate to Project SettingsService Accounts
  4. Click "Generate new private key"
  5. Download the JSON file and save it as credentials.json in the project root

Enable Firebase Services

Make sure these services are enabled in your Firebase project:

  • Authentication (for user management)
  • Firestore Database (for document storage)
  • Cloud Storage (for file uploads)

4. Environment Configuration

Create a .env file in the project root:

# Firebase Configuration
SERVICE_ACCOUNT_KEY_PATH=credentials.json
FIREBASE_STORAGE_BUCKET=your-project-id.appspot.com

# MCP Configuration
MCP_TRANSPORT=http
MCP_HOST=127.0.0.1
MCP_PORT=8001

# Django Settings
DEBUG=True
SECRET_KEY=your-secret-key-here

⚠️ Important: Replace your-project-id with your actual Firebase project ID.

5. Quick Test with Standalone Agent

Test your setup immediately with the standalone Firebase agent:

# Run the standalone agent
python firebase_admin_mcp/standalone_firebase_agent.py

You should see:

🔥 Firebase MCP Agent Ready!
Type 'help' for available commands, 'quit' to exit.

>

Try these commands:

> List all Firebase collections
> Check Firebase health status
> help
> quit

6. Full Django Setup (Optional)

For full Django integration:

# Apply migrations
python manage.py migrate

# Create superuser (optional)
python manage.py createsuperuser

# Run Django development server
python manage.py runserver 8001

The MCP server will be available at: http://127.0.0.1:8001/mcp/

🛠️ Management Commands

Core Commands

# Run standalone Firebase agent (quick testing)
python firebase_admin_mcp/standalone_firebase_agent.py

# Run MCP server via Django
python manage.py runserver 8001

# Run MCP server in stdio mode (for MCP clients)
python manage.py run_mcp --transport stdio

# Run MCP server in HTTP mode
python manage.py run_mcp --transport http --host 127.0.0.1 --port 8001

# Run standalone agent via Django management command
python manage.py run_standalone_agent

Testing Commands

# Test Firebase connectivity
python firebase_admin_mcp/tests/test_firebase_connection.py

# Test MCP server completeness
python firebase_admin_mcp/tests/test_mcp_complete.py

# Demo Firebase agent
python firebase_admin_mcp/tests/demo_firebase_agent.py

# Demo standalone agent
python firebase_admin_mcp/demo_standalone_agent.py

🔧 Available Tools

The MCP server provides 14 Firebase tools across three categories:

🔐 Authentication (4 tools)

  • firebase_verify_token - Verify Firebase ID tokens
  • firebase_create_custom_token - Create custom auth tokens
  • firebase_get_user - Get user info by UID
  • firebase_delete_user - Delete user accounts

📚 Firestore Database (6 tools)

  • firestore_list_collections - List all collections
  • firestore_create_document - Create new documents
  • firestore_get_document - Retrieve documents
  • firestore_update_document - Update documents
  • firestore_delete_document - Delete documents
  • firestore_query_collection - Query with filters

🗄️ Cloud Storage (4 tools)

  • storage_list_files - List files with filtering
  • storage_upload_file - Upload files
  • storage_download_file - Download files
  • storage_delete_file - Delete files

🧪 Quick Testing

Test Server Health

curl http://127.0.0.1:8001/mcp/

Test a Firebase Tool

curl -X POST http://127.0.0.1:8001/mcp/ \
  -H "Content-Type: application/json" \
  -d '{
    "jsonrpc": "2.0",
    "method": "tools/call",
    "params": {
      "name": "firestore_list_collections",
      "arguments": {}
    },
    "id": 1
  }'

🤖 AI Agent Integration

LangChain Example

from langchain_openai import ChatOpenAI
from langgraph.prebuilt import create_react_agent

# Import Firebase tools
from firebase_admin_mcp.tools.agents.firebase_mcp_client import ALL_FIREBASE_TOOLS

# Create agent with Firebase capabilities
model = ChatOpenAI(model="gpt-4")
agent = create_react_agent(
    model=model,
    tools=ALL_FIREBASE_TOOLS,
    prompt="You are a Firebase assistant with full database and storage access."
)

# Use the agent
response = agent.invoke({
    "messages": [{"role": "user", "content": "Show me all my Firestore collections"}]
})

📚 Documentation

This project includes comprehensive documentation:

  • FIREBASE_ADMIN_MCP.md - Complete technical documentation

    • Detailed API reference
    • All tool specifications
    • Advanced configuration
    • Security considerations
    • Production deployment guide
  • STANDALONE_AGENT.md - Standalone agent documentation

    • Self-contained Firebase agent
    • Complete feature overview
    • Usage examples
    • Integration patterns

🔧 Troubleshooting

Common Issues

Problem: Default app does not exist error Solution: Verify credentials.json path in .env file

Problem: Server won't start Solution: Check if port 8001 is available: netstat -an | findstr :8001

Problem: Firebase connection fails Solution: Verify Firebase services are enabled in console

Problem: Import errors Solution: Ensure all dependencies installed: pip install -r requirements.txt

🎯 What's Next?

  1. Explore the Standalone Agent - Perfect for quick testing and demos
  2. Read the Full Documentation - See FIREBASE_ADMIN_MCP.md for complete details
  3. Integrate with Your AI Agents - Use the MCP tools in your applications
  4. Customize for Your Needs - Extend with additional Firebase operations

📝 Project Structure

django-firebase-mcp/
├── README.md                          # This file
├── FIREBASE_ADMIN_MCP.md             # Complete documentation
├── STANDALONE_AGENT.md               # Standalone agent guide
├── requirements.txt                   # Python dependencies
├── credentials.json                   # Firebase credentials (you create this)
├── .env                              # Environment variables (you create this)
├── manage.py                         # Django management
├── firebase_admin_mcp/               # Main MCP app
│   ├── standalone_firebase_agent.py  # Standalone agent
│   ├── tools/                        # Firebase MCP tools
│   ├── management/commands/          # Django commands
│   └── tests/                        # Test suite
└── django_firebase_mcp/             # Django project settings

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Test your changes
  4. Submit a pull request

📄 License

MIT License - see LICENSE file for details.


🔥 Ready to supercharge your AI agents with Firebase?

Start with the standalone agent, then explore the full documentation for advanced usage!

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured