Discover Awesome MCP Servers

Extend your agent with 14,392 capabilities via MCP servers.

All14,392
Speelka Agent

Speelka Agent

基于 MCP 的通用 LLM 代理

Gemini MCP Server

Gemini MCP Server

一个 MCP 服务器实现,允许通过 Claude 或其他 MCP 客户端,使用谷歌的 Gemini AI 模型(特别是 Gemini 1.5 Pro),通过模型上下文协议 (Model Context Protocol)。

Mcp Qdrant Docker

Mcp Qdrant Docker

Okay, here's a breakdown of Docker configuration for a Qdrant MCP (Multi-Cluster Proxy) server, along with explanations and best practices. I'll provide a `docker-compose.yml` example and discuss the key elements. **Understanding Qdrant MCP** The Qdrant MCP acts as a gateway to multiple Qdrant clusters. It handles routing requests to the appropriate cluster based on configuration. This is useful for: * **Scaling:** Distributing your data across multiple Qdrant clusters. * **Isolation:** Separating data for different tenants or applications. * **High Availability:** Routing around failed clusters. * **Geo-Distribution:** Placing data closer to users. **`docker-compose.yml` Example** ```yaml version: "3.9" services: qdrant-mcp: image: qdrant/qdrant-mcp:latest # Or specify a version ports: - "6333:6333" # MCP API port - "6334:6334" # MCP GRPC port environment: QDRANT_MCP_CONFIG_PATH: /qdrant-mcp/config/config.yaml # Path to your config file volumes: - ./config:/qdrant-mcp/config # Mount your config directory restart: unless-stopped depends_on: - qdrant-cluster-1 # Replace with your actual cluster service names - qdrant-cluster-2 # Replace with your actual cluster service names # Add more dependencies as needed qdrant-cluster-1: image: qdrant/qdrant:latest # Or specify a version ports: - "6335:6333" # Cluster 1 API port environment: QDRANT__SERVICE__GRPC_PORT: 6336 volumes: - qdrant_data_1:/qdrant/storage restart: unless-stopped qdrant-cluster-2: image: qdrant/qdrant:latest # Or specify a version ports: - "6337:6333" # Cluster 2 API port environment: QDRANT__SERVICE__GRPC_PORT: 6338 volumes: - qdrant_data_2:/qdrant/storage restart: unless-stopped volumes: qdrant_data_1: qdrant_data_2: ``` **Explanation:** 1. **`version: "3.9"`:** Specifies the Docker Compose file version. Use a version compatible with your Docker installation. 2. **`services:`:** Defines the services (containers) that will be run. 3. **`qdrant-mcp:`:** The service for the Qdrant MCP. * **`image: qdrant/qdrant-mcp:latest`:** Uses the official Qdrant MCP Docker image. **Important:** Consider using a specific version tag (e.g., `qdrant/qdrant-mcp:v1.5.0`) instead of `latest` for production to ensure consistent behavior. * **`ports:`:** Maps the container ports to the host ports. * `6333:6333`: The main Qdrant MCP API port (HTTP). You'll use this to send requests to the MCP. * `6334:6334`: The Qdrant MCP gRPC port. * **`environment:`:** Sets environment variables for the container. * `QDRANT_MCP_CONFIG_PATH: /qdrant-mcp/config/config.yaml`: Specifies the path to the MCP configuration file *inside* the container. This is crucial. * **`volumes:`:** Mounts a directory from your host machine into the container. * `./config:/qdrant-mcp/config`: Mounts the `./config` directory on your host to `/qdrant-mcp/config` inside the container. This is where you'll place your `config.yaml` file. **You MUST create this `./config` directory and put your `config.yaml` file in it.** * **`restart: unless-stopped`:** Automatically restarts the container if it crashes, unless you explicitly stop it. Good for reliability. * **`depends_on:`:** Specifies dependencies. The MCP will only start *after* the listed services (your Qdrant clusters) are running. **Important:** Replace `qdrant-cluster-1` and `qdrant-cluster-2` with the actual names of your Qdrant cluster services in your `docker-compose.yml`. Add more as needed. 4. **`qdrant-cluster-1` and `qdrant-cluster-2`:** Example Qdrant cluster services. You'll need to configure these according to your needs. * **`image: qdrant/qdrant:latest`:** Uses the official Qdrant Docker image. Again, use a specific version tag for production. * **`ports:`:** Maps the container ports to the host ports. Make sure these ports don't conflict with each other or with the MCP. * **`environment:`:** Sets environment variables for the container. The `QDRANT__SERVICE__GRPC_PORT` is important for internal communication within the cluster. * **`volumes:`:** Mounts a volume for persistent storage of the Qdrant data. `qdrant_data_1:/qdrant/storage` creates a named volume. * **`restart: unless-stopped`:** Automatically restarts the container if it crashes. 5. **`volumes:`:** Defines named volumes for persistent storage. This is important so your data isn't lost when the containers are stopped or restarted. **`config.yaml` (Qdrant MCP Configuration)** This is the most important part. The `config.yaml` file tells the MCP how to route requests to your Qdrant clusters. Here's an example: ```yaml clusters: cluster1: address: "qdrant-cluster-1:6333" # Use the service name and port cluster2: address: "qdrant-cluster-2:6333" # Use the service name and port collection_mappings: my_collection: cluster: cluster1 # All requests for "my_collection" go to cluster1 another_collection: cluster: cluster2 # All requests for "another_collection" go to cluster2 shared_collection: cluster: cluster1 # All requests for "shared_collection" go to cluster1 ``` **Explanation of `config.yaml`:** * **`clusters:`:** Defines the Qdrant clusters that the MCP will route to. * `cluster1`, `cluster2`: Arbitrary names for your clusters. Use descriptive names. * `address`: The address of the Qdrant cluster. **Crucially, use the Docker service name (e.g., `qdrant-cluster-1`) and the internal port (6333 by default).** Docker's internal DNS will resolve the service name to the container's IP address. Do *not* use `localhost` or the host's IP address here. * **`collection_mappings:`:** Defines how collections are mapped to clusters. * `my_collection`, `another_collection`, `shared_collection`: The names of your Qdrant collections. * `cluster`: The name of the cluster (as defined in the `clusters` section) that should handle requests for this collection. **Important Considerations and Best Practices:** * **Version Pinning:** Always use specific version tags for your Docker images (e.g., `qdrant/qdrant-mcp:v1.5.0`, `qdrant/qdrant:v1.5.0`) instead of `latest` in production. This prevents unexpected behavior when the images are updated. * **Configuration Management:** Use a proper configuration management system (e.g., environment variables, configuration files) to manage your Qdrant and MCP settings. Avoid hardcoding values in your Dockerfiles or Compose files. * **Networking:** Docker Compose automatically creates a default network for your services. This allows the services to communicate with each other using their service names. If you need more complex networking, you can define custom networks. * **Health Checks:** Implement health checks for your Qdrant clusters and the MCP. This allows Docker to automatically restart unhealthy containers. See the Qdrant documentation for details on health check endpoints. * **Logging:** Configure logging for your Qdrant clusters and the MCP. This is essential for troubleshooting. Docker can collect logs from the containers and send them to a central logging system. * **Monitoring:** Monitor the performance of your Qdrant clusters and the MCP. Use metrics to track CPU usage, memory usage, disk I/O, and network traffic. * **Security:** Secure your Qdrant clusters and the MCP. Use authentication and authorization to control access to your data. Consider using TLS/SSL to encrypt communication between the MCP and the clusters. * **Resource Limits:** Set resource limits (CPU, memory) for your containers to prevent them from consuming too many resources. * **Backup and Restore:** Implement a backup and restore strategy for your Qdrant data. * **Testing:** Thoroughly test your Qdrant MCP setup before deploying it to production. * **Qdrant Documentation:** Refer to the official Qdrant documentation for the most up-to-date information and best practices: [https://qdrant.tech/documentation/](https://qdrant.tech/documentation/) **How to Run:** 1. **Create the `config` directory:** `mkdir config` 2. **Create the `config.yaml` file:** Place the `config.yaml` file (with your cluster definitions and collection mappings) in the `config` directory. 3. **Save the `docker-compose.yml` file:** Save the `docker-compose.yml` file in the same directory as the `config` directory. 4. **Run Docker Compose:** `docker-compose up -d` (This will start the containers in detached mode.) **Troubleshooting:** * **Check the logs:** Use `docker-compose logs qdrant-mcp` (or the name of your MCP service) to view the logs for the MCP container. Look for errors related to configuration, cluster connections, or routing. * **Verify the configuration:** Double-check the `config.yaml` file for errors. Make sure the cluster addresses are correct and that the collection mappings are accurate. * **Check network connectivity:** Make sure the MCP container can communicate with the Qdrant cluster containers. You can use `docker exec -it qdrant-mcp bash` to enter the MCP container and then use tools like `ping` or `telnet` to test connectivity. * **Qdrant Cluster Status:** Ensure your Qdrant clusters are running and healthy *before* starting the MCP. **Chinese Translation of Key Terms:** * **Qdrant MCP (Multi-Cluster Proxy):** Qdrant 多集群代理 (Duō jíqún dàilǐ) * **Cluster:** 集群 (Jíqun) * **Collection:** 集合 (Jíhé) * **Configuration:** 配置 (Pèizhì) * **Docker Compose:** Docker Compose * **Service:** 服务 (Fúwù) * **Image:** 镜像 (Jìngxiàng) * **Container:** 容器 (Róngqì) * **Port:** 端口 (Duānkǒu) * **Environment Variable:** 环境变量 (Huánjìng biànliàng) * **Volume:** 卷 (Juǎn) * **Mapping:** 映射 (Yìngshè) This comprehensive guide should help you set up a Qdrant MCP server using Docker. Remember to adapt the configuration to your specific needs and environment. Good luck!

MCP Test

MCP Test

带有 GitHub 集成的 MCP 服务器 (Dài yǒu GitHub jíchéng de MCP fúwùqì)

OpenAI Image Generation MCP Server

OpenAI Image Generation MCP Server

Provides tools for generating and editing images using OpenAI's gpt-image-1 model via an MCP interface, enabling AI assistants to create and modify images based on text prompts.

GKE Hub API MCP Server

GKE Hub API MCP Server

An auto-generated MCP server that enables interaction with Google Kubernetes Engine Hub API for multi-cluster management through natural language commands.

Trakt

Trakt

PyMCPAutoGUI

PyMCPAutoGUI

一个 MCP 服务器,它将 AI 代理与 GUI 自动化功能桥接起来,使它们能够控制鼠标、键盘、窗口并截取屏幕截图,从而与桌面应用程序进行交互。

mcp-test

mcp-test

just a test

mcp-spacefrontiers

mcp-spacefrontiers

在学术数据和社交网络中搜索

🗄️ Couchbase MCP Server for LLMs

🗄️ Couchbase MCP Server for LLMs

镜子 (jìng zi)

Memory Server with Qdrant Persistence

Memory Server with Qdrant Persistence

利用 Qdrant 通过语义搜索促进知识图谱表示,支持 OpenAI 嵌入以实现语义相似性,并支持强大的 HTTPS 集成以及基于文件的图谱持久化。

Serveur MCP Airbnb

Serveur MCP Airbnb

镜子 (jìng zi)

Run Model Context Protocol (MCP) servers with AWS Lambda

Run Model Context Protocol (MCP) servers with AWS Lambda

Run existing Model Context Protocol (MCP) stdio-based servers in AWS Lambda functions

authorize-net-mcp

authorize-net-mcp

实验性的 Authorize.net Node.js TypeScript MCP 服务器

Gerrit Review MCP Server

Gerrit Review MCP Server

Provides integration with Gerrit code review system, allowing AI assistants to fetch change details and compare patchset differences for code reviews.

RhinoMCP

RhinoMCP

通过模型上下文协议将 Rhino3D 连接到 Claude AI,从而通过直接控制 Rhino 的功能实现 AI 辅助的 3D 建模和设计工作流程。

IDA-doc-hint-mcp

IDA-doc-hint-mcp

IDA 文档阅读器(某种程度上是)MCP 服务器

MCP File Server

MCP File Server

用于读取和写入本地文件的 MCP 服务器 (Yòng yú dúqǔ hé xiě rù běndì wénjiàn de MCP fúwùqì) Alternatively, depending on the specific context, you might also say: 本地文件读写 MCP 服务器 (Běndì wénjiàn dú xiě MCP fúwùqì)

Understanding MCP Architecture: Single-Server vs Multi-Server Clients

Understanding MCP Architecture: Single-Server vs Multi-Server Clients

使用 LangGraph 的 MCP 架构演示,包含单服务器和多服务器客户端,利用 AI 驱动的工具调用和异步通信。

FrontendLeap MCP Server

FrontendLeap MCP Server

A Model Context Protocol server that enables Claude and other AI assistants to generate personalized, contextually-relevant coding challenges in JavaScript, TypeScript, HTML, and CSS.

MCP LEDAPI Intent Controller

MCP LEDAPI Intent Controller

A Model Context Protocol server that translates high-level intents into commands for controlling an Arduino-based LED system via a RESTful interface.

MindLayer TradingView MCP Agent

MindLayer TradingView MCP Agent

Connects TradingView's Pine Script indicators with MindLayer's MCP for cryptocurrency trading signals based on RSI and Stochastic RSI analysis.

Gmail MCP Server

Gmail MCP Server

用于与 AI 助手无缝集成的 Gmail 模型上下文协议服务器

mcp-server-jina MCP 服务器

mcp-server-jina MCP 服务器

Spring AI MCP Server

Spring AI MCP Server

使用 Spring Boot 和 AI 的 Excel、PPT 生成服务器

MCP FishAudio Server

MCP FishAudio Server

An MCP (Model Context Protocol) server that provides seamless integration between Fish Audio's Text-to-Speech API and LLMs like Claude, enabling natural language-driven speech synthesis.

MCP Server

MCP Server

Development repository for MCP (Managed Communication Protocol) server

Context Apps

Context Apps

This MCP server provides an AI-powered productivity suite that connects Todo, Idea, Journal, and Timer apps with AI

UniProt MCP Server

UniProt MCP Server

一个 MCP 服务器,使语言模型能够从 UniProt 数据库获取蛋白质信息,包括蛋白质详情、序列、功能和结构。