MCP Embedding Search

MCP Embedding Search

A Model Context Protocol server that searches transcript segments in a Turso database using vector similarity, allowing users to find relevant content by asking questions without generating new embeddings.

spences10

Databases
Search
Knowledge & Memory
JavaScript
Visit Server

README

mcp-embedding-search

A Model Context Protocol (MCP) server that queries a Turso database containing embeddings and transcript segments. This tool allows users to search for relevant transcript segments by asking questions, without generating new embeddings.

Features

  • 🔍 Vector similarity search for transcript segments
  • 📊 Relevance scoring based on cosine similarity
  • 📝 Complete transcript metadata (episode title, timestamps)
  • ⚙️ Configurable search parameters (limit, minimum score)
  • 🔄 Efficient database connection pooling
  • 🛡️ Comprehensive error handling
  • 📈 Performance optimized for quick responses

Configuration

This server requires configuration through your MCP client. Here are examples for different environments:

Cline Configuration

Add this to your Cline MCP settings:

{
	"mcpServers": {
		"mcp-embedding-search": {
			"command": "node",
			"args": ["/path/to/mcp-embedding-search/dist/index.js"],
			"env": {
				"TURSO_URL": "your-turso-database-url",
				"TURSO_AUTH_TOKEN": "your-turso-auth-token"
			}
		}
	}
}

Claude Desktop Configuration

Add this to your Claude Desktop configuration:

{
	"mcpServers": {
		"mcp-embedding-search": {
			"command": "node",
			"args": ["/path/to/mcp-embedding-search/dist/index.js"],
			"env": {
				"TURSO_URL": "your-turso-database-url",
				"TURSO_AUTH_TOKEN": "your-turso-auth-token"
			}
		}
	}
}

API

The server implements one MCP tool:

search_embeddings

Search for relevant transcript segments using vector similarity.

Parameters:

  • question (string, required): The query text to search for
  • limit (number, optional): Number of results to return (default: 5, max: 50)
  • min_score (number, optional): Minimum similarity threshold (default: 0.5, range: 0-1)

Response format:

[
	{
		"episode_title": "Episode Title",
		"segment_text": "Transcript segment content...",
		"start_time": 123.45,
		"end_time": 167.89,
		"similarity": 0.85
	}
	// Additional results...
]

Database Schema

This tool expects a Turso database with the following schema:

CREATE TABLE embeddings (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  transcript_id INTEGER NOT NULL,
  embedding TEXT NOT NULL,
  FOREIGN KEY(transcript_id) REFERENCES transcripts(id)
);

CREATE TABLE transcripts (
  id INTEGER PRIMARY KEY AUTOINCREMENT,
  episode_title TEXT NOT NULL,
  segment_text TEXT NOT NULL,
  start_time REAL NOT NULL,
  end_time REAL NOT NULL
);

The embedding column should contain vector embeddings that can be used with the vector_distance_cos function.

Development

Setup

  1. Clone the repository
  2. Install dependencies:
npm install
  1. Build the project:
npm run build
  1. Run in development mode:
npm run dev

Publishing

The project uses changesets for version management. To publish:

  1. Create a changeset:
npm run changeset
  1. Version the package:
npm run version
  1. Publish to npm:
npm run release

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

MIT License - see the LICENSE file for details.

Acknowledgments

Recommended Servers

Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Claude Code MCP

Claude Code MCP

An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.

Featured
Local
JavaScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
mcp-shodan

mcp-shodan

MCP server for querying the Shodan API and Shodan CVEDB. This server provides tools for IP lookups, device searches, DNS lookups, vulnerability queries, CPE lookups, and more.

Featured
JavaScript
mcp-pinterest

mcp-pinterest

A Pinterest Model Context Protocol (MCP) server for image search and information retrieval

Featured
TypeScript
Metabase MCP Server

Metabase MCP Server

Enables AI assistants to interact with Metabase databases and dashboards, allowing users to list and execute queries, access data visualizations, and interact with database resources through natural language.

Featured
JavaScript
Airtable MCP Server

Airtable MCP Server

A Model Context Protocol server that provides tools for programmatically managing Airtable bases, tables, fields, and records through Claude Desktop or other MCP clients.

Featured
JavaScript
Linear MCP Server

Linear MCP Server

A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Featured
JavaScript