MCP DuckDB Knowledge Graph Memory Server

MCP DuckDB Knowledge Graph Memory Server
Featured

A memory server for Claude that stores and retrieves knowledge graph data in DuckDB, enhancing performance and query capabilities for conversations with persistent user information.

IzumiSy

Knowledge & Memory
Databases
TypeScript
Visit Server

Tools

open_nodes

Open specific nodes in the knowledge graph by their names

delete_relations

Delete multiple relations from the knowledge graph

create_entities

Create multiple new entities in the knowledge graph

create_relations

Create multiple new relations between entities in the knowledge graph. Relations should be in active voice

add_observations

Add new observations to existing entities in the knowledge graph

delete_entities

Delete multiple entities and their associated relations from the knowledge graph

delete_observations

Delete specific observations from entities in the knowledge graph

search_nodes

Search for nodes in the knowledge graph based on a query

README

MCP DuckDB Knowledge Graph Memory Server

Test smithery badge NPM Version NPM License

A forked version of the official Knowledge Graph Memory Server.

<a href="https://glama.ai/mcp/servers/4mqwh1toao"> <img width="380" height="200" src="https://glama.ai/mcp/servers/4mqwh1toao/badge" alt="DuckDB Knowledge Graph Memory Server MCP server" /> </a>

Installation

Installing via Smithery

To install DuckDB Knowledge Graph Memory Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @IzumiSy/mcp-duckdb-memory-server --client claude

Manual install

Otherwise, add @IzumiSy/mcp-duckdb-memory-server in your claude_desktop_config.json manually (MEMORY_FILE_PATH is optional)

{
  "mcpServers": {
    "graph-memory": {
      "command": "npx",
      "args": [
        "-y",
        "@izumisy/mcp-duckdb-memory-server"
      ],
      "env": {
        "MEMORY_FILE_PATH": "/path/to/your/memory.data"
      }
    }
  }
}

The data stored on that path is a DuckDB database file.

Docker

Build

docker build -t mcp-duckdb-graph-memory .

Run

docker run -dit mcp-duckdb-graph-memory

Usage

Use the example instruction below

Follow these steps for each interaction:

1. User Identification:
   - You should assume that you are interacting with default_user
   - If you have not identified default_user, proactively try to do so.

2. Memory Retrieval:
   - Always begin your chat by saying only "Remembering..." and search relevant information from your knowledge graph
   - Create a search query from user words, and search things from "memory". If nothing matches, try to break down words in the query at first ("A B" to "A" and "B" for example).
   - Always refer to your knowledge graph as your "memory"

3. Memory
   - While conversing with the user, be attentive to any new information that falls into these categories:
     a) Basic Identity (age, gender, location, job title, education level, etc.)
     b) Behaviors (interests, habits, etc.)
     c) Preferences (communication style, preferred language, etc.)
     d) Goals (goals, targets, aspirations, etc.)
     e) Relationships (personal and professional relationships up to 3 degrees of separation)

4. Memory Update:
   - If any new information was gathered during the interaction, update your memory as follows:
     a) Create entities for recurring organizations, people, and significant events
     b) Connect them to the current entities using relations
     b) Store facts about them as observations

Motivation

This project enhances the original MCP Knowledge Graph Memory Server by replacing its backend with DuckDB.

Why DuckDB?

The original MCP Knowledge Graph Memory Server used a JSON file as its data store and performed in-memory searches. While this approach works well for small datasets, it presents several challenges:

  1. Performance: In-memory search performance degrades as the dataset grows
  2. Scalability: Memory usage increases significantly when handling large numbers of entities and relations
  3. Query Flexibility: Complex queries and conditional searches are difficult to implement
  4. Data Integrity: Ensuring atomicity for transactions and CRUD operations is challenging

DuckDB was chosen to address these challenges:

  • Fast Query Processing: DuckDB is optimized for analytical queries and performs well even with large datasets
  • SQL Interface: Standard SQL can be used to execute complex queries easily
  • Transaction Support: Supports transaction processing to maintain data integrity
  • Indexing Capabilities: Allows creation of indexes to improve search performance
  • Embedded Database: Works within the application without requiring an external database server

Implementation Details

This implementation uses DuckDB as the backend storage system, focusing on two key aspects:

Database Structure

The knowledge graph is stored in a relational database structure as shown below:

erDiagram
    ENTITIES {
        string name PK
        string entityType
    }
    OBSERVATIONS {
        string entityName FK
        string content
    }
    RELATIONS {
        string from_entity FK
        string to_entity FK
        string relationType
    }

    ENTITIES ||--o{ OBSERVATIONS : "has"
    ENTITIES ||--o{ RELATIONS : "from"
    ENTITIES ||--o{ RELATIONS : "to"

This schema design allows for efficient storage and retrieval of knowledge graph components while maintaining the relationships between entities, observations, and relations.

Fuzzy Search Implementation

The implementation combines SQL queries with Fuse.js for flexible entity searching:

  • DuckDB SQL queries retrieve the base data from the database
  • Fuse.js provides fuzzy matching capabilities on top of the retrieved data
  • This hybrid approach allows for both structured queries and flexible text matching
  • Search results include both exact and partial matches, ranked by relevance

Development

Setup

pnpm install

Testing

pnpm test

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Playwright MCP Server

Playwright MCP Server

Provides a server utilizing Model Context Protocol to enable human-like browser automation with Playwright, allowing control over browser actions such as navigation, element interaction, and scrolling.

Featured
Local
TypeScript
Apple MCP Server

Apple MCP Server

Enables interaction with Apple apps like Messages, Notes, and Contacts through the MCP protocol to send messages, search, and open app content using natural language.

Featured
Local
TypeScript
contentful-mcp

contentful-mcp

Update, create, delete content, content-models and assets in your Contentful Space

Featured
TypeScript
Supabase MCP Server

Supabase MCP Server

A Model Context Protocol (MCP) server that provides programmatic access to the Supabase Management API. This server allows AI models and other clients to manage Supabase projects and organizations through a standardized interface.

Featured
JavaScript
serper-search-scrape-mcp-server

serper-search-scrape-mcp-server

This Serper MCP Server supports search and webpage scraping, and all the most recent parameters introduced by the Serper API, like location.

Featured
TypeScript
The Verge News MCP Server

The Verge News MCP Server

Provides tools to fetch and search news from The Verge's RSS feed, allowing users to get today's news, retrieve random articles from the past week, and search for specific keywords in recent Verge content.

Featured
TypeScript
MCP Server Trello

MCP Server Trello

Facilitates interaction with Trello boards via the Trello API, offering features like rate limiting, type safety, input validation, and error handling for seamless management of cards, lists, and board activities.

Featured
TypeScript
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript