Tavily MCP Server Featured
Provides AI-powered web search capabilities using Tavily's search API, enabling LLMs to perform sophisticated web searches, get direct answers to questions, and search recent news articles.
RamXX
README
Tavily MCP Server
A Model Context Protocol server that provides AI-powered web search capabilities using Tavily's search API. This server enables LLMs to perform sophisticated web searches, get direct answers to questions, and search recent news articles with AI-extracted relevant content.
Features
Available Tools
-
tavily_web_search
- Performs comprehensive web searches with AI-powered content extraction.query
(string, required): Search querymax_results
(integer, optional): Maximum number of results to return (default: 5, max: 20)search_depth
(string, optional): Either "basic" or "advanced" search depth (default: "basic")include_domains
(list or string, optional): List of domains to specifically include in resultsexclude_domains
(list or string, optional): List of domains to exclude from results
-
tavily_answer_search
- Performs web searches and generates direct answers with supporting evidence.query
(string, required): Search querymax_results
(integer, optional): Maximum number of results to return (default: 5, max: 20)search_depth
(string, optional): Either "basic" or "advanced" search depth (default: "advanced")include_domains
(list or string, optional): List of domains to specifically include in resultsexclude_domains
(list or string, optional): List of domains to exclude from results
-
tavily_news_search
- Searches recent news articles with publication dates.query
(string, required): Search querymax_results
(integer, optional): Maximum number of results to return (default: 5, max: 20)days
(integer, optional): Number of days back to search (default: 3)include_domains
(list or string, optional): List of domains to specifically include in resultsexclude_domains
(list or string, optional): List of domains to exclude from results
Prompts
The server also provides prompt templates for each search type:
- tavily_web_search - Search the web using Tavily's AI-powered search engine
- tavily_answer_search - Search the web and get an AI-generated answer with supporting evidence
- tavily_news_search - Search recent news articles with Tavily's news search
Prerequisites
- Python 3.11 or later
- A Tavily API key (obtain from Tavily's website)
uv
Python package manager (recommended)
Installation
Option 1: Using pip or uv
# With pip
pip install mcp-tavily
# Or with uv (recommended)
uv add mcp-tavily
You should see output similar to:
Resolved packages: mcp-tavily, mcp, pydantic, python-dotenv, tavily-python [...]
Successfully installed mcp-tavily-0.1.4 mcp-1.0.0 [...]
Option 2: From source
# Clone the repository
git clone https://github.com/RamXX/mcp-tavily.git
cd mcp-tavily
# Create a virtual environment (optional but recommended)
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install dependencies and build
uv sync # Or: pip install -r requirements.txt
uv build # Or: pip install -e .
# To install with test dependencies:
uv sync --dev # Or: pip install -r requirements-dev.txt
During installation, you should see the package being built and installed with its dependencies.
Usage with VS Code
For quick installation, use one of the one-click install buttons below:
For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P
and typing Preferences: Open User Settings (JSON)
.
Optionally, you can add it to a file called .vscode/mcp.json
in your workspace. This will allow you to share the configuration with others.
Note that the
mcp
key is not needed in the.vscode/mcp.json
file.
{
"mcp": {
"inputs": [
{
"type": "promptString",
"id": "apiKey",
"description": "Tavily API Key",
"password": true
}
],
"servers": {
"tavily": {
"command": "uvx",
"args": ["mcp-tavily"],
"env": {
"TAVILY_API_KEY": "${input:apiKey}"
}
}
}
}
}
Configuration
API Key Setup
The server requires a Tavily API key, which can be provided in three ways:
-
Through a
.env
file in your project directory:TAVILY_API_KEY=your_api_key_here
-
As an environment variable:
export TAVILY_API_KEY=your_api_key_here
-
As a command-line argument:
python -m mcp_server_tavily --api-key=your_api_key_here
Configure for Claude.app
Add to your Claude settings:
"mcpServers": {
"tavily": {
"command": "python",
"args": ["-m", "mcp_server_tavily"]
},
"env": {
"TAVILY_API_KEY": "your_api_key_here"
}
}
If you encounter issues, you may need to specify the full path to your Python interpreter. Run which python
to find the exact path.
Usage Examples
For a regular web search:
Tell me about Anthropic's newly released MCP protocol
To generate a report with domain filtering:
Tell me about redwood trees. Please use MLA format in markdown syntax and include the URLs in the citations. Exclude Wikipedia sources.
To use answer search mode for direct answers:
I want a concrete answer backed by current web sources: What is the average lifespan of redwood trees?
For news search:
Give me the top 10 AI-related news in the last 5 days
Testing
The project includes a comprehensive test suite. To run the tests:
-
Install test dependencies:
source .venv/bin/activate # If using a virtual environment uv sync --dev # Or: pip install -r requirements-dev.txt
-
Run the tests:
./tests/run_tests.sh
You should see output similar to:
============================= test session starts ==============================
collected 27 items
tests/test_models.py ................. [ 62%]
tests/test_utils.py ..... [ 81%]
tests/test_integration.py ..... [100%]
---------- coverage: platform darwin, python 3.13.2-final-0 ----------
Name Stmts Miss Cover
-------------------------------------------------------
src/mcp_server_tavily/__init__.py 16 2 88%
src/mcp_server_tavily/__main__.py 2 2 0%
src/mcp_server_tavily/server.py 137 80 42%
-------------------------------------------------------
TOTAL 155 84 46%
============================== 27 passed in 0.40s ==============================
The test suite includes tests for data models, utility functions, integration testing, error handling, and parameter validation. It focuses on verifying that all API capabilities work correctly, including handling of domain filters and various input formats.
Debugging
You can use the MCP inspector to debug the server:
# Using npx
npx @modelcontextprotocol/inspector python -m mcp_server_tavily
# For development
cd path/to/mcp-tavily
npx @modelcontextprotocol/inspector python -m mcp_server_tavily
Contributing
We welcome contributions to improve mcp-tavily! Here's how you can help:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Make your changes
- Run tests to ensure they pass
- Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
For examples of other MCP servers and implementation patterns, see: https://github.com/modelcontextprotocol/servers
License
mcp-tavily is licensed under the MIT License. See the LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Playwright MCP Server
Provides a server utilizing Model Context Protocol to enable human-like browser automation with Playwright, allowing control over browser actions such as navigation, element interaction, and scrolling.
@kazuph/mcp-fetch
Model Context Protocol server for fetching web content and processing images. This allows Claude Desktop (or any MCP client) to fetch web content and handle images appropriately.
DuckDuckGo MCP Server
A Model Context Protocol (MCP) server that provides web search capabilities through DuckDuckGo, with additional features for content fetching and parsing.
YouTube Transcript MCP Server
This server retrieves transcripts for given YouTube video URLs, enabling integration with Goose CLI or Goose Desktop for transcript extraction and processing.
serper-search-scrape-mcp-server
This Serper MCP Server supports search and webpage scraping, and all the most recent parameters introduced by the Serper API, like location.
The Verge News MCP Server
Provides tools to fetch and search news from The Verge's RSS feed, allowing users to get today's news, retrieve random articles from the past week, and search for specific keywords in recent Verge content.
Google Search Console MCP Server
A server that provides access to Google Search Console data through the Model Context Protocol, allowing users to retrieve and analyze search analytics data with customizable dimensions and reporting periods.