Discover Awesome MCP Servers
Extend your agent with 20,433 capabilities via MCP servers.
- All20,433
- Developer Tools3,867
- Search1,714
- Research & Data1,557
- AI Integration Systems229
- Cloud Platforms219
- Data & App Analysis181
- Database Interaction177
- Remote Shell Execution165
- Browser Automation147
- Databases145
- Communication137
- AI Content Generation127
- OS Automation120
- Programming Docs Access109
- Content Fetching108
- Note Taking97
- File Systems96
- Version Control93
- Finance91
- Knowledge & Memory90
- Monitoring79
- Security71
- Image & Video Processing69
- Digital Note Management66
- AI Memory Systems62
- Advanced AI Reasoning59
- Git Management Tools58
- Cloud Storage51
- Entertainment & Media43
- Virtualization42
- Location Services35
- Web Automation & Stealth32
- Media Content Processing32
- Calendar Management26
- Ecommerce & Retail18
- Speech Processing18
- Customer Data Platforms16
- Travel & Transportation14
- Education & Learning Tools13
- Home Automation & IoT13
- Web Search Integration12
- Health & Wellness10
- Customer Support10
- Marketing9
- Games & Gamification8
- Google Cloud Integrations7
- Art & Culture4
- Language Translation3
- Legal & Compliance2
CrewAI Enterprise MCP Server
ユーザーがClaude Desktopを通じて、デプロイされたCrewAIワークフローを開始および監視できるようにする、モデルコンテキストプロトコルサーバー。
Fastapi Mcp Server
FastAPI MCP Serverは、FastAPIを使用して構築されたMCP (Model Context Protocol) サーバーです。このプロジェクトは、様々なツールやデータソースへのアクセスを統一的に実現することを目的としています。
Createve.AI Nexus: Enabling Real-World AI Agent Deployment 🚀
Createve.AI Nexus Server: 高度なLLMおよびエージェント利用のためのMCPおよびAPIブリッジ
systemprompt-mcp-reddit
Redditとやり取りするためのAIエージェントを可能にする、特殊なMCPサーバー。投稿の閲覧、コンテンツの作成、サブレディットの設定管理などが可能です。
mcp-server-cex-bn
鏡 (Kagami)
任务API
discover prompt
Model-Context-Protocol
Okay, I understand. Here's a Python code example using Flask to create an MCP (presumably meaning a minimal or model-centric application) that integrates a LLaMA model for summarization and serves it via a web API. I'll use the `transformers` library for LLaMA and assume you have a LLaMA model available (e.g., from Hugging Face Model Hub). I'll also include error handling and basic input validation. **Important Considerations:** * **Model Size and Hardware:** LLaMA models can be very large. You'll need sufficient RAM and potentially a GPU to run them efficiently. This code assumes you have the necessary hardware. * **Model Loading:** The code assumes you have a LLaMA model saved locally or accessible via a Hugging Face model name. Adjust the `model_name` variable accordingly. * **API Key/Authentication:** For production environments, you'll want to add authentication (e.g., API keys) to protect your API. This example omits that for simplicity. * **Error Handling:** The error handling is basic. You should enhance it for a production application. * **Rate Limiting:** Implement rate limiting to prevent abuse of your API. * **Dependencies:** Make sure you have the required libraries installed: `pip install flask transformers torch` (or `tensorflow` if you prefer TensorFlow). * **Model License:** Be aware of the license associated with the LLaMA model you are using. ```python from flask import Flask, request, jsonify from transformers import pipeline import torch # Or tensorflow, depending on your setup import logging app = Flask(__name__) # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') # Model loading (adjust model_name as needed) model_name = "facebook/llama-2-7b-chat-hf" # Example: Replace with your LLaMA model name/path try: # Check if CUDA is available and use it, otherwise use CPU device = "cuda:0" if torch.cuda.is_available() else "cpu" logging.info(f"Using device: {device}") summarizer = pipeline("summarization", model=model_name, device=device) logging.info(f"Model {model_name} loaded successfully.") except Exception as e: logging.error(f"Error loading model: {e}") summarizer = None # Set to None to indicate loading failure # Consider exiting the application if the model fails to load. # raise # Uncomment to stop the app if model loading fails @app.route('/summarize', methods=['POST']) def summarize_text(): """ API endpoint for summarizing text using the LLaMA model. """ if summarizer is None: return jsonify({"error": "Model not loaded. Check server logs."}), 500 try: data = request.get_json() if not data or 'text' not in data: return jsonify({"error": "Missing 'text' field in request body."}), 400 text = data['text'] if not isinstance(text, str) or len(text) == 0: return jsonify({"error": "Invalid 'text' input. Must be a non-empty string."}), 400 # Perform summarization try: summary = summarizer(text, max_length=130, min_length=30, do_sample=False)[0]['summary_text'] # Adjust parameters as needed return jsonify({"summary": summary}) except Exception as e: logging.error(f"Error during summarization: {e}") return jsonify({"error": f"Summarization failed: {e}"}), 500 except Exception as e: logging.error(f"Error processing request: {e}") return jsonify({"error": f"Internal server error: {e}"}), 500 if __name__ == '__main__': app.run(debug=True, host='0.0.0.0', port=5000) # Make sure debug is False in production ``` **Explanation:** 1. **Imports:** Imports necessary libraries (Flask, `transformers`, `torch`, logging). 2. **Flask App Initialization:** Creates a Flask application instance. 3. **Logging:** Configures basic logging to help with debugging. Crucial for production. 4. **Model Loading:** * Sets the `model_name` to the Hugging Face model name or local path of your LLaMA model. **Replace this with your actual model!** * Determines if CUDA (GPU) is available and sets the `device` accordingly. * Uses the `pipeline` from `transformers` to load the model for summarization. This is a high-level API that simplifies model usage. * Includes a `try...except` block to handle potential errors during model loading. If the model fails to load, the `summarizer` variable is set to `None`, and an error message is logged. The application *continues* to run, but the `/summarize` endpoint will return an error. You might want to `raise` the exception to stop the app if model loading is critical. 5. **`/summarize` Endpoint:** * Defines a Flask route `/summarize` that accepts POST requests. * Checks if the `summarizer` is `None` (meaning the model failed to load). If so, it returns an error. * Retrieves the JSON data from the request body using `request.get_json()`. * Validates that the request body contains a `text` field. * Validates that the `text` field is a non-empty string. * Calls the `summarizer` pipeline to generate the summary. The `max_length`, `min_length`, and `do_sample` parameters control the summarization process. Adjust these as needed for your specific model and requirements. `do_sample=False` makes the summarization more deterministic. * Extracts the summary text from the pipeline's output. * Returns the summary in a JSON response. * Includes `try...except` blocks to handle potential errors during request processing and summarization. 6. **`if __name__ == '__main__':` Block:** * Starts the Flask development server. * `debug=True` enables debugging mode (useful during development but should be `False` in production). * `host='0.0.0.0'` makes the server accessible from any IP address (useful for testing on a network). * `port=5000` sets the port number. **How to Run:** 1. **Save:** Save the code as a Python file (e.g., `app.py`). 2. **Install Dependencies:** `pip install flask transformers torch` 3. **Set Model:** **Crucially, replace `"facebook/llama-2-7b-chat-hf"` with the correct model name or path.** 4. **Run:** `python app.py` 5. **Test:** Send a POST request to `http://localhost:5000/summarize` with a JSON body like this: ```json { "text": "This is a long piece of text that I want to summarize. It contains many sentences and paragraphs. The goal is to reduce the text to its most important points while preserving the overall meaning." } ``` You can use `curl`, `Postman`, or any other HTTP client to send the request. **Example using `curl`:** ```bash curl -X POST -H "Content-Type: application/json" -d '{"text": "This is a long piece of text that I want to summarize. It contains many sentences and paragraphs. The goal is to reduce the text to its most important points while preserving the overall meaning."}' http://localhost:5000/summarize ``` **Key Improvements and Best Practices:** * **Error Handling:** More robust error handling is essential for production. Log errors to a file, use more specific exception types, and provide informative error messages to the client. * **Input Validation:** Thoroughly validate all input data to prevent security vulnerabilities and unexpected behavior. * **Security:** Implement authentication (e.g., API keys, JWT) to protect your API. * **Rate Limiting:** Use a rate-limiting library (e.g., Flask-Limiter) to prevent abuse of your API. * **Asynchronous Processing:** For long-running summarization tasks, consider using asynchronous processing (e.g., Celery, Redis Queue) to avoid blocking the Flask server. * **Configuration:** Use environment variables or a configuration file to store sensitive information (e.g., API keys, model paths). * **Monitoring:** Monitor your application's performance and resource usage. * **Model Optimization:** Explore techniques like quantization or pruning to reduce the model's size and improve performance. * **GPU Usage:** Ensure that your model is running on a GPU if available for faster inference. The code includes a check for CUDA. * **Logging:** Use a proper logging framework to record events and errors. * **Documentation:** Document your API using tools like Swagger or OpenAPI. * **Testing:** Write unit tests and integration tests to ensure that your code is working correctly. * **Deployment:** Use a production-ready WSGI server (e.g., Gunicorn, uWSGI) to deploy your application. This comprehensive example provides a solid foundation for building an MCP application with LLaMA for summarization. Remember to adapt it to your specific needs and environment. Good luck!
Mcp Server Redis
ClaudeにRedisデータベースへのアクセスと操作を提供するためのサーバー。基本的な操作、リスト、ハッシュ、セット、およびpub/sub機能のためのツールセットを備えています。
ChatData MCP 服务器
AegnticMCP
AegnticMCPは、MCPサーバーの作成と管理を自動化し、安定性、適応性、そしてインテリジェンスを保証します。
comfy-ui-mcp-server MCP server
鏡 (Kagami)
Roo MCP サーバー
convex-mcp-server MCP Server
鏡 (Kagami)
MCP SSE Server
arXiv-Search-MCP-Server
arXiv検索のためのMCPサーバーについて
repo-template
Pythonパッケージのインテリジェンスのためのモデルコンテキストプロトコル(MCP)サーバー。PyPIパッケージとGitHubリポジトリに対する構造化されたクエリを提供します。LLMとのインタラクションのために、依存関係分析、バージョン追跡、パッケージメタデータの取得などの機能を備えています。
MCP Servers for Cursor IDE
Workflows MCP v0.1.0
プロンプトとMCPサーバーを連携・統合して、複合的なMCPツールを構築する
MCP Servers
モデルコンテキストプロトコル (MCP) サーバーのコレクションとセットアップ手順
MCP Key Server
APIキーを保存し、npmインストールを提供するMCPサーバー
Strava MCP Server
鏡 (Kagami)
Portkey MCP Server
鏡 (Kagami)
PayAI MCP Server
PayAIネットワーク用のモデルコンテキストプロトコルサーバーです!PayAIをClaude Desktop、Cursor、またはお気に入りのMCPホストに接続しましょう!
MCP Chat Demo
Model Context Protocol (MCP) サーバーとの統合を示すサンプルチャットアプリケーション
Model Context Protocol ( MCP ) Python server to use with continue.dev
Model Context Protocolを実装したPythonサーバー。continue.dev環境におけるLLMとのインタラクションを強化するために、カスタマイズ可能なプロンプトテンプレート、リソース、およびツールを提供します。
MCP Tree-sitter Server
tree-sitter を使用してコード分析機能を提供する Model Context Protocol (MCP) サーバー。Claude が適切なコンテキスト管理によってコードベースにインテリジェントにアクセスできるように設計されています。
Mcp Mongodb
MCPサーバー (MCP Sābā)
Angle One MCP Server
鏡 (Kagami)
mcp-server-modal
鏡 (Kagami)
mongo-db-mcp
MongoDB 用 MCP サーバー