Strava MCP Server
Mirror of
MCP-Mirror
README
Strava MCP Server
A Model Context Protocol (MCP) server that provides access to the Strava API. This server enables language models to interact with Strava data, including activities, athlete information, and more.
Features
- πββοΈ Activity tracking and analysis
- π Athlete statistics
- πΊοΈ Route visualization
- π Achievement tracking
- π€ Social features (kudos, comments)
Prerequisites
- Python 3.12+
- Strava API credentials
- pip (Python package installer)
Installation
- Clone the repository:
git clone https://github.com/yourusername/strava_mcp.git
cd strava_mcp
- Create a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: .\venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
Configuration
- Create a
config/.envfile with your Strava API credentials:
STRAVA_CLIENT_ID=your_client_id
STRAVA_CLIENT_SECRET=your_client_secret
STRAVA_REFRESH_TOKEN=your_refresh_token
- To obtain Strava API credentials:
- Go to https://www.strava.com/settings/api
- Create a new application
- Note down the Client ID and Client Secret
- Follow the OAuth 2.0 flow to get your refresh token
Usage
Using with Claude
Once connected, you can interact with your Strava data through Claude in various ways:
Activity Queries
- "Show me my recent activities"
- "Get details about my last run"
- "What was my longest ride this month?"
- "Show me activities where I set personal records"
- "Display the route map for my latest activity"
Performance Analysis
- "What's my average running pace this year?"
- "Compare my cycling performance between last month and this month"
- "Show me my heart rate zones from yesterday's workout"
- "What's my total elevation gain for all activities?"
- "Calculate my weekly mileage for running"
Social Interactions
- "Who gave kudos on my latest activity?"
- "Show me comments on my marathon run"
- "List all my club activities"
- "Find activities I did with friends"
Achievement Tracking
- "List all my segment achievements"
- "Show my personal records on local segments"
- "What achievements did I earn this week?"
- "Display my progress on yearly goals"
Data Available Through Claude
-
Activity Details:
- Distance, duration, pace
- Route maps and elevation profiles
- Heart rate, power, and cadence data
- Splits and lap information
- Weather conditions during activity
-
Athlete Statistics:
- Year-to-date and all-time totals
- Personal records and achievements
- Training load and fitness trends
- Equipment usage and maintenance
-
Social Data:
- Kudos and comments
- Club activities and leaderboards
- Friend activities and challenges
- Segment efforts and rankings
-
Route Information:
- Detailed maps with elevation data
- Segment analysis
- Popular routes and segments
- Route planning and analysis
As an MCP Server
Update your Claude Desktop configuration:
{
"mcpServers": {
"Strava": {
"command": "python",
"args": ["src/strava_server.py"],
"cwd": "/path/to/strava_mcp",
"env": {
"STRAVA_CLIENT_ID": "your_client_id",
"STRAVA_CLIENT_SECRET": "your_client_secret",
"STRAVA_REFRESH_TOKEN": "your_refresh_token"
}
}
}
}
As an HTTP Server
- Start the server:
./run_server.sh
- Access the API at
http://localhost:8000
Available endpoints:
- GET
/activities/recent- List recent activities - GET
/activities/{id}- Get activity details - GET
/activities/{id}/map- Get activity map visualization - GET
/athlete/stats- Get athlete statistics
Development
Project Structure
strava_mcp/
βββ src/
β βββ strava_server.py # MCP server implementation
β βββ strava_http_server.py # HTTP API server
β βββ map_utils.py # Map visualization utilities
β βββ templates.py # HTML templates
βββ config/
β βββ .env # Environment variables (not in git)
βββ requirements.txt # Python dependencies
βββ run_server.sh # Server startup script
Contributing
- Fork the repository
- Create a feature branch
- Commit your changes
- Push to the branch
- Create a Pull Request
Security
- Never commit
.envfiles or API credentials - The
.gitignorefile is configured to prevent sensitive data from being committed - Use environment variables for all sensitive configuration
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
- Strava API Documentation
- Model Context Protocol (MCP) Specification
- Contributors and maintainers
Recommended Servers
mixpanel
Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.
Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.
Crypto Price & Market Analysis MCP Server
A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.
MCP PubMed Search
Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.
dbt Semantic Layer MCP Server
A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.
Nefino MCP Server
Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.
Vectorize
Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.
Mentor MCP Server
Provides LLM Agents with AI-powered mentorship for code review, design critique, writing feedback, and brainstorming using the Deepseek API, enabling enhanced output in various development and strategic planning tasks.
Excel Reader Server
A Model Context Protocol (MCP) server that provides tools for reading Excel (xlsx) files, enabling extraction of data from entire workbooks or specific sheets with results returned in structured JSON format.
MATLAB MCP Server
Integrates MATLAB with AI to execute code, generate scripts from natural language, and access MATLAB documentation seamlessly.