Discover Awesome MCP Servers
Extend your agent with 15,444 capabilities via MCP servers.
- All15,444
- Developer Tools3,867
- Search1,714
- Research & Data1,557
- AI Integration Systems229
- Cloud Platforms219
- Data & App Analysis181
- Database Interaction177
- Remote Shell Execution165
- Browser Automation147
- Databases145
- Communication137
- AI Content Generation127
- OS Automation120
- Programming Docs Access109
- Content Fetching108
- Note Taking97
- File Systems96
- Version Control93
- Finance91
- Knowledge & Memory90
- Monitoring79
- Security71
- Image & Video Processing69
- Digital Note Management66
- AI Memory Systems62
- Advanced AI Reasoning59
- Git Management Tools58
- Cloud Storage51
- Entertainment & Media43
- Virtualization42
- Location Services35
- Web Automation & Stealth32
- Media Content Processing32
- Calendar Management26
- Ecommerce & Retail18
- Speech Processing18
- Customer Data Platforms16
- Travel & Transportation14
- Education & Learning Tools13
- Home Automation & IoT13
- Web Search Integration12
- Health & Wellness10
- Customer Support10
- Marketing9
- Games & Gamification8
- Google Cloud Integrations7
- Art & Culture4
- Language Translation3
- Legal & Compliance2
Meilisearch MCP Server (Go)
Meilisearch用のGo製MCPサーバーラッパー。ClaudeのようなLLMがModel Context Protocolを介して強力な検索機能にアクセスできるようにします。
Basecamp MCP Integration
MCPサーバーで、Basecamp 3+ APIと連携する
MCP Server for Jira
Code Runner MCP Server
鏡 (Kagami)
OpenDota MCP Server
鏡 (Kagami)
Specifai MCP Server
MCPサーバーは、Specifaiプロジェクトの要件やタスクなどを、Hai BuildやCursorのようなMCPをサポートするAIツールに提供します。
🚀 Model Context Protocol (MCP) Server Python Template 🐍
PythonでModel Context Protocolサーバーを構築するための合理化された基盤であり、MCPツールのAI支援開発をより簡単かつ効率的に行うように設計されています。
Swytchcode MCP server
Swytchcodeは、API連携を加速させ、開発者がPostmanコレクションまたはOpenAPI仕様を使用して、あらゆるAPIをシームレスに統合できるようにします。Swytchcodeを使用することで、開発者は希望するプログラミング言語で、すぐに本番環境で使用できるコードを取得でき、統合時間を最大90%短縮できます。 Swytchcodeプラットフォームは、80以上のAPIのコード生成をサポートしており、必要に応じてAPIを追加できます。この効率化されたアプローチにより、開発者は面倒な統合タスクではなく、イノベーションに集中できます。 主な機能: APIサポート:Stripe、PayPal、Shopifyなどの人気のあるFinTechサービスを含む、80以上のAPIと統合。 コード生成:複数のプログラミング言語でコードを生成し、さまざまな開発環境との互換性を確保。 オンデマンドAPI追加:開発者は必要に応じて、追加のAPIのサポートをリクエスト可能。
Tutorial: Create an MCP Server in .NET using C#
これは、.NETでMCPサーバーを作成する非常に基本的な例です。
mcp
様々なタスクのためのMCPサーバーのコレクション
CF-MCP-Server
mcp-simple-server-cursor
MCP Server: VS Code Extensions Installer
CursorにVS Code拡張機能を自動的にインストールするためのMCPツール
Model Context Protocol and Fireproof Demo: JSON Document Server
鏡 (Kagami)
Crypto Indicators MCP Server
MCPサーバーは、様々な暗号通貨のテクニカル分析指標と戦略を提供するものです。
Mcp Api
MCPクライアントとサーバー
MCP-Agg: Multi-Channel Platform Aggregator
集約された MCP サーバー
dicom-mcp: A DICOM Model Context Protocol Server
AIアシスタントが、DICOMサーバーから医療画像メタデータ(患者情報、スタディ、シリーズ、インスタンスなど)をクエリおよび分析できるようにし、さらにカプセル化されたPDFドキュメントからテキストを抽出できるようにします。
MCP Harbor
Harbor コンテナレジストリとやり取りするための Model Context Protocol サーバーを提供する Node.js アプリケーション。プロジェクト、リポジトリ、タグ、Helm チャートの操作をサポートします。
Database MCP Server
Model Context Protocol (MCP) サーバーは、統一されたインターフェースを通じて、様々なデータベースシステム(SQLite、PostgreSQL、MySQL/MariaDB、SQL Server)への接続と操作を行うためのツールを提供するものです。
Script Tool
スクリプトを実行するためのMCPサーバー
Freqtrade-MCP
Freqtrade暗号通貨取引ボットと連携するMCPサーバー。
MCP Tools
鏡 (Kagami)
Fillout.io MCP Server
Fillout.io API を使用して、フォーム管理、回答処理、および分析を可能にし、フォームのインタラクションとインサイトを強化します。
LibreChat MCP Servers
Okay, here are instructions for setting up SuperGateway MCP (Multi-Chain Protocol) servers in Docker containers for Docker deployments of LibreChat. I'll provide a comprehensive guide, covering prerequisites, Dockerfile creation, Docker Compose configuration, and important considerations. **Important Considerations Before You Begin:** * **Complexity:** Setting up SuperGateway MCP servers adds complexity to your LibreChat deployment. Ensure you understand the implications and have a good grasp of Docker and networking concepts. * **Resource Requirements:** Each MCP server will consume resources (CPU, memory, network). Plan your server resources accordingly. * **Security:** Pay close attention to security. Expose only necessary ports and implement appropriate authentication and authorization mechanisms. * **API Keys:** You will need API keys for each of the models you want to use with SuperGateway. * **SuperGateway Documentation:** Refer to the official SuperGateway documentation for the most up-to-date information and specific configuration options. My instructions are a general guide, but the official documentation is the definitive source. **Step 1: Prerequisites** * **Docker:** Ensure you have Docker installed and running on your system. * **Docker Compose:** Docker Compose is essential for managing multi-container applications. Install it if you haven't already. * **LibreChat Docker Deployment:** You should already have a working LibreChat Docker deployment. These instructions assume you're adding SuperGateway to an existing setup. * **SuperGateway MCP Server Binaries:** You'll need the SuperGateway MCP server binaries. You can typically obtain these from the SuperGateway project's releases or build them from source. Download the appropriate binaries for your system architecture. * **API Keys:** Obtain API keys for the models you intend to use with SuperGateway. **Step 2: Create Dockerfiles for Each MCP Server** You'll need a separate Dockerfile for each MCP server you want to run. Here's a template Dockerfile, which you'll need to adapt for each specific MCP server: ```dockerfile # Use a base image that suits your needs. Alpine is lightweight. FROM alpine:latest # Update the package index and install necessary dependencies. RUN apk update && apk add --no-cache bash curl jq # Create a directory for the MCP server. RUN mkdir -p /app # Copy the MCP server binary to the container. Replace 'mcp_server' with the actual filename. COPY mcp_server /app/mcp_server # Copy the configuration file. Replace 'config.json' with your actual config file. COPY config.json /app/config.json # Make the binary executable. RUN chmod +x /app/mcp_server # Expose the port the MCP server will listen on. Adjust as needed. EXPOSE 8000 # Set the working directory. WORKDIR /app # Command to run the MCP server. Adjust the command-line arguments as needed. CMD ["./mcp_server", "--config", "config.json"] ``` **Explanation:** * `FROM alpine:latest`: Uses a lightweight Alpine Linux base image. You can choose a different base image if you prefer (e.g., `ubuntu:latest`). * `RUN apk update && apk add --no-cache bash curl jq`: Updates the package index and installs `bash`, `curl`, and `jq`. These are common utilities that might be useful for debugging or interacting with the server. Adjust the packages as needed. * `RUN mkdir -p /app`: Creates a directory inside the container to hold the MCP server files. * `COPY mcp_server /app/mcp_server`: Copies the MCP server binary from your local machine to the `/app` directory in the container. **Replace `mcp_server` with the actual filename of your MCP server binary.** * `COPY config.json /app/config.json`: Copies the MCP server configuration file from your local machine to the `/app` directory in the container. **Replace `config.json` with the actual filename of your configuration file.** * `RUN chmod +x /app/mcp_server`: Makes the MCP server binary executable. * `EXPOSE 8000`: Exposes port 8000. **Change this to the port your MCP server is configured to listen on.** * `WORKDIR /app`: Sets the working directory inside the container to `/app`. * `CMD ["./mcp_server", "--config", "config.json"]`: Defines the command to run when the container starts. **Adjust the command-line arguments to match your MCP server's requirements.** The `--config` flag is a common way to specify the configuration file. **Example: Dockerfile for an OpenAI MCP Server** Let's say you have an MCP server specifically for OpenAI models. Your Dockerfile might look like this: ```dockerfile FROM alpine:latest RUN apk update && apk add --no-cache bash curl jq RUN mkdir -p /app COPY openai_mcp_server /app/openai_mcp_server COPY openai_config.json /app/openai_config.json RUN chmod +x /app/openai_mcp_server EXPOSE 8001 # Assuming OpenAI MCP server listens on port 8001 WORKDIR /app CMD ["./openai_mcp_server", "--config", "openai_config.json"] ``` **Important:** * **Create a separate directory for each MCP server's files.** This will keep your project organized. For example: * `openai_mcp/Dockerfile` * `openai_mcp/openai_mcp_server` * `openai_mcp/openai_config.json` * `anthropic_mcp/Dockerfile` * `anthropic_mcp/anthropic_mcp_server` * `anthropic_mcp/anthropic_config.json` * And so on... * **Customize the `config.json` file for each MCP server.** This file will contain the API keys, model configurations, and other settings specific to that server. Refer to the SuperGateway documentation for the correct format. **Step 3: Create a Docker Compose File** Now, create a `docker-compose.yml` file to define your services. This file will orchestrate the creation and linking of your LibreChat container and your MCP server containers. ```yaml version: "3.9" services: librechat: # Your existing LibreChat service definition. This is just an example. image: ghcr.io/danny-dann/librechat:latest ports: - "3080:3080" environment: - VITE_APP_API_URL=http://localhost:3080 - OPENAI_API_KEY=${OPENAI_API_KEY} # If you're still using OpenAI directly # ... other LibreChat environment variables ... volumes: - librechat_data:/data depends_on: - mongodb mongodb: # Your existing MongoDB service definition. This is just an example. image: mongo:latest ports: - "27017:27017" volumes: - mongodb_data:/data/db openai_mcp: build: ./openai_mcp ports: - "8001:8001" environment: - OPENAI_API_KEY=${OPENAI_API_KEY} # Pass the API key to the container depends_on: - librechat # Ensure LibreChat starts before the MCP server anthropic_mcp: build: ./anthropic_mcp ports: - "8002:8002" environment: - ANTHROPIC_API_KEY=${ANTHROPIC_API_KEY} # Pass the API key to the container depends_on: - librechat # Ensure LibreChat starts before the MCP server # Add more MCP server definitions here as needed. volumes: librechat_data: mongodb_data: ``` **Explanation:** * `version: "3.9"`: Specifies the Docker Compose file version. * `services:`: Defines the services that make up your application. * `librechat:`: Your existing LibreChat service definition. **Keep this as it is.** I've included a basic example, but use your actual LibreChat configuration. * `mongodb:`: Your existing MongoDB service definition. **Keep this as it is.** I've included a basic example, but use your actual MongoDB configuration. * `openai_mcp:`: Defines the OpenAI MCP server service. * `build: ./openai_mcp`: Tells Docker Compose to build the image from the `Dockerfile` located in the `./openai_mcp` directory. * `ports: - "8001:8001"`: Maps port 8001 on the host machine to port 8001 in the container. **Adjust this to match the port your MCP server is listening on.** * `environment: - OPENAI_API_KEY=${OPENAI_API_KEY}`: Passes the `OPENAI_API_KEY` environment variable to the container. **This is crucial for providing the MCP server with the necessary API key.** You'll need to set this environment variable on your host machine or in a `.env` file. * `depends_on: - librechat`: Ensures that the `librechat` service starts before the `openai_mcp` service. This is important because LibreChat might need to be running before the MCP server can connect to it. * `anthropic_mcp:`: Defines the Anthropic MCP server service. This is similar to the `openai_mcp` service, but with different settings. * `volumes:`: Defines the volumes used by the services. **Keep your existing volumes for LibreChat and MongoDB.** **Important:** * **Replace the example LibreChat and MongoDB service definitions with your actual configurations.** * **Add more MCP server service definitions as needed.** For each MCP server, create a separate service definition with the appropriate `build`, `ports`, `environment`, and `depends_on` settings. * **Set the environment variables for your API keys.** You can do this in a `.env` file in the same directory as your `docker-compose.yml` file. For example: ``` OPENAI_API_KEY=sk-your-openai-api-key ANTHROPIC_API_KEY=your-anthropic-api-key ``` Then, Docker Compose will automatically load these environment variables when you run `docker-compose up`. **Do not commit your `.env` file to version control!** * **Adjust the `depends_on` settings as needed.** If one MCP server depends on another, make sure to specify the dependency in the `depends_on` section. **Step 4: Configure LibreChat to Use SuperGateway** Now you need to configure LibreChat to use the SuperGateway MCP servers. This typically involves setting the `API_URL` or similar configuration option in LibreChat to point to the SuperGateway endpoint. **This is the most crucial step and depends heavily on how SuperGateway is integrated with LibreChat.** Consult the SuperGateway and LibreChat documentation for the specific configuration options. **Example (Conceptual):** Let's say SuperGateway exposes an endpoint like `http://localhost:8000/chat`. You might need to set the `VITE_APP_API_URL` environment variable in your LibreChat service definition to: ```yaml librechat: # ... environment: - VITE_APP_API_URL=http://localhost:8000/chat # Example! Adjust as needed. # ... ``` **Important:** * **The `API_URL` or equivalent setting in LibreChat must point to the correct SuperGateway endpoint.** This is how LibreChat will know to send requests to SuperGateway instead of directly to the model providers. * **You might need to configure SuperGateway to route requests to the appropriate MCP servers based on the model being used.** This is typically done in the SuperGateway configuration file. * **Test your configuration thoroughly.** Make sure that LibreChat is correctly sending requests to SuperGateway and that SuperGateway is correctly routing requests to the MCP servers. **Step 5: Build and Run the Docker Compose Project** Finally, build and run the Docker Compose project: ```bash docker-compose up --build ``` This command will: 1. Build the Docker images for each service (including the MCP servers). 2. Create and start the containers. **Step 6: Verify and Test** * **Check the logs:** Use `docker-compose logs -f` to view the logs of each service. Look for any errors or warnings. * **Test LibreChat:** Access LibreChat in your browser and try sending requests to different models. Verify that the requests are being routed through SuperGateway and that the responses are correct. * **Monitor resource usage:** Use `docker stats` to monitor the resource usage of the containers. Make sure that the MCP servers are not consuming excessive resources. **Troubleshooting** * **Container fails to start:** Check the logs for errors. Common causes include incorrect configuration, missing dependencies, or port conflicts. * **LibreChat cannot connect to SuperGateway:** Verify that the `API_URL` or equivalent setting in LibreChat is correct. Also, check the network connectivity between the LibreChat container and the SuperGateway container. * **SuperGateway cannot connect to the MCP servers:** Verify that the MCP server addresses and ports are correct in the SuperGateway configuration file. Also, check the network connectivity between the SuperGateway container and the MCP server containers. * **API key errors:** Make sure that you have provided the correct API keys to the MCP servers. Also, check that the API keys are valid and have sufficient permissions. **Summary of Key Points (Japanese Translation):** * **複雑性:** SuperGateway MCPサーバーのセットアップは複雑さを増します。 Dockerとネットワークの概念を理解していることを確認してください。 *(Fukuzatsu-sei: SuperGateway MCP sābā no settoappu wa fukuzatsu-sa o mashimasu. Docker to nettowāku no gainen o rikai shite iru koto o kakunin shite kudasai.)* * **リソース要件:** 各MCPサーバーはリソースを消費します。 サーバーのリソースを適切に計画してください。 *(Risōsu yōken: Kaku MCP sābā wa risōsu o shōhi shimasu. Sābā no risōsu o tekisetsu ni keikaku shite kudasai.)* * **セキュリティ:** セキュリティに注意してください。 必要なポートのみを公開し、適切な認証および認可メカニズムを実装してください。 *(Sekyuriti: Sekyuriti ni chūi shite kudasai. Hitsuyō na pōto nomi o kōkai shi, tekisetsu na ninshō oyobi ninka mekanizumu o jissō shite kudasai.)* * **APIキー:** SuperGatewayで使用するモデルごとにAPIキーが必要です。 *(API kī: SuperGateway de shiyō suru moderu goto ni API kī ga hitsuyō desu.)* * **SuperGatewayドキュメント:** 最新の情報と特定の設定オプションについては、公式ドキュメントを参照してください。 *(SuperGateway dokyumento: Saishin no jōhō to tokutei no settei opushon ni tsuite wa, kōshiki dokyumento o sanshō shite kudasai.)* * **各MCPサーバーに個別のディレクトリを作成します。** *(Kaku MCP sābā ni kobetsu no direkutori o sakusei shimasu.)* * **`.env`ファイルをバージョン管理にコミットしないでください!** *(`.env` fairu o bājon kanri ni komitto shinaide kudasai!)* * **LibreChatの`API_URL`設定がSuperGatewayのエンドポイントを指していることを確認してください。** *(LibreChat no `API_URL` settei ga SuperGateway no endopointo o sashite iru koto o kakunin shite kudasai.)* * **設定を徹底的にテストしてください。** *(Settei o tetteiteki ni tesuto shite kudasai.)* This is a complex setup, so be prepared to troubleshoot and consult the documentation for both LibreChat and SuperGateway. Good luck!
Creating an MCP Server in Go and Serving it with Docker (part 2)
Goose FM
承知いたしました。「AIアシスタントがFMラジオ局にチューニングできるMCPサーバーのMVP」を日本語に翻訳します。 **翻訳:** AIアシスタントがFMラジオ局にチューニングできるMCPサーバーのMVP (Minimum Viable Product) **解説:** * **MVP (Minimum Viable Product)** は、そのまま「MVP」と表記されることが多いです。必要最低限の機能を持つ製品という意味合いです。 * **MCP server** は、文脈によって意味合いが変わりますが、ここでは「メディアコントロールプロトコル (Media Control Protocol) サーバー」と解釈し、そのまま「MCPサーバー」と表記します。 * 全体として、AIアシスタントがFMラジオ局にアクセスするための、必要最低限の機能を持つMCPサーバーを指しています。 より自然な日本語にする場合は、以下のような表現も考えられます。 * AIアシスタントがFMラジオを聴取できる、最小限の機能を持つMCPサーバー * AIアシスタント向けFMラジオチューニング機能付きMCPサーバーのMVP どちらの表現が適切かは、文脈によって判断してください。
Venice AI Image Generator MCP Server
MCPサーバーの機能(ベニスとジェミニ(画像))のテスト
Limitless MCP Integration
Limitless API のためのモデルコンテキストプロトコルサーバー、クライアント、およびインタラクティブモード
Template Redmine Plugin