Unified Docs Hub
Provides AI assistants with searchable access to documentation from 170+ curated repositories and 1000+ popular GitHub projects across 20+ categories including trading, AI/ML, DevOps, and web development.
README
š Unified Docs Hub - The Ultimate MCP Documentation Server
Transform your AI assistant into a documentation powerhouse! Unified Docs Hub is an MCP (Model Context Protocol) server that creates a massive, searchable knowledge base from 170+ curated repositories and 1000+ auto-discovered GitHub projects.
š Why Unified Docs Hub?
Ever wished your AI assistant had instant access to ALL the documentation it needs? This MCP server solves that by:
- š Massive Knowledge Base: 170+ hand-picked repositories + 1000+ auto-discovered popular projects
- š Lightning-Fast Search: Full-text search across 11,000+ documentation files in milliseconds
- š¤ AI-Optimized: Perfect for Claude, ChatGPT, and other AI assistants using MCP
- š Self-Updating: Automated daily updates and weekly discovery of new repositories
- šÆ Specialized Coverage: Deep expertise in Trading/Finance, AI/ML, DevOps, and 20+ categories
š¬ Real-World Examples
Example 1: Building a Trading Bot
AI: "Show me how to build a crypto trading bot with backtesting"
You: unified_search(query="crypto trading bot backtesting", category="Trading & Finance")
Result: Instant access to documentation from:
- Freqtrade (advanced crypto trading bot)
- Backtrader (backtesting framework)
- CCXT (100+ exchange APIs)
- TA-Lib (200+ technical indicators)
Example 2: Learning Kubernetes
AI: "Explain Kubernetes deployment strategies"
You: unified_search(query="kubernetes deployment strategies", category="Cloud/DevOps")
Result: Documentation from:
- Official Kubernetes docs
- Helm charts best practices
- ArgoCD GitOps workflows
- Istio service mesh patterns
Example 3: Machine Learning Pipeline
AI: "Set up an MLOps pipeline with experiment tracking"
You: unified_search(query="mlops pipeline experiment tracking", category="MLOps")
Result: Comprehensive guides from:
- MLflow (experiment tracking)
- Kubeflow (distributed training)
- DVC (data versioning)
- Weights & Biases (visualization)
š What's Inside?
Knowledge Coverage
| Category | Repositories | Highlights |
|---|---|---|
| Trading & Finance | 64 repos | Algorithmic trading, options, forex, HFT, portfolio optimization |
| AI/ML | 20 repos | LLMs, transformers, deep learning, NLP, computer vision |
| Cloud/DevOps | 15 repos | Kubernetes, Docker, Terraform, CI/CD, monitoring |
| Web Development | 12 repos | React, Vue, Next.js, full-stack frameworks |
| MLOps | 6 repos | ML lifecycle, experiment tracking, model deployment |
| Data Engineering | 8 repos | Apache Spark, Airflow, dbt, data pipelines |
| Observability | 5 repos | Prometheus, Grafana, OpenTelemetry, APM |
| Blockchain | 5 repos | Smart contracts, DeFi, Web3 development |
| 20+ More Categories | ... | Security, databases, mobile, desktop, and more |
Key Features
- š„ Full-Text Search: SQLite FTS5 engine for sub-second searches across millions of lines
- š Quality Scoring: Curated repos ranked by documentation quality (1-10 scale)
- š·ļø Smart Categorization: Browse by technology area or programming language
- š Auto-Discovery: Continuously finds new popular repositories (10k+ stars)
- š¾ Efficient Storage: Deduplication and compression keep the database lean
- š”ļø Rate Limit Handling: Respects GitHub API limits with smart throttling
š Quick Start
Prerequisites
- Python 3.8 or higher
- GitHub Personal Access Token (optional but recommended)
- An MCP-compatible AI assistant (Claude Desktop, Continue.dev, etc.)
Installation
- Clone the repository
git clone https://github.com/yourusername/unified-docs-hub.git
cd unified-docs-hub
- Set up Python environment
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
- Configure your MCP client
For Claude Desktop, add to ~/Library/Application Support/Claude/claude_desktop_config.json:
{
"mcpServers": {
"unified-docs-hub": {
"command": "/path/to/unified-docs-hub/venv/bin/python",
"args": ["/path/to/unified-docs-hub/unified_docs_hub_server.py"],
"env": {
"GITHUB_TOKEN": "your-github-token-here"
}
}
}
}
- Initial indexing (optional - the server will do this automatically)
# Index all curated repositories
python -c "import asyncio; from unified_docs_hub_server import index_repositories; asyncio.run(index_repositories('smart'))"
š Available MCP Tools
unified_search
Search across all documentation with powerful filters.
# Basic search
unified_search("react hooks tutorial")
# Advanced search with filters
unified_search(
query="transformer architecture attention",
category="AI/ML",
min_stars=5000
)
# Trading-specific search
unified_search(
query="options greeks volatility smile",
category="Trading & Finance"
)
index_repositories
Control repository indexing and discovery.
# Smart mode: Index curated + discover popular (recommended)
index_repositories(mode="smart")
# Update all existing repos
index_repositories(mode="update")
# Discover new trending repos
index_repositories(mode="discover", min_stars=5000, count=50)
list_repositories
Browse indexed repositories.
# List all Trading & Finance repos
list_repositories(category="Trading & Finance")
# Show only curated high-quality repos
list_repositories(source="curated", limit=20)
get_repository_docs
Get all documentation for a specific repository.
# Get all Kubernetes docs
get_repository_docs("kubernetes/kubernetes")
# Get trading library docs
get_repository_docs("freqtrade/freqtrade")
get_statistics
View comprehensive database statistics.
get_statistics()
# Returns: Total repos, documents, categories, languages, API status
š¤ Automated Updates
The server includes automated indexing that keeps your knowledge base fresh:
Setup Automated Updates
# Run the setup script
./setup_automated_indexing.sh
# Or manually start the updater
python automated_index_updater.py --once # Run once
python automated_index_updater.py # Run continuously
Update Schedule
- Daily: Updates all curated repositories (2 AM, 2 PM)
- Weekly: Discovers new trending repositories
- On-Demand: Manual updates via MCP tools
šļø Architecture
Core Components
unified-docs-hub/
āāā unified_docs_hub_server.py # Main MCP server
āāā database.py # SQLite + FTS5 engine
āāā github_client.py # GitHub API integration
āāā response_limiter.py # HTTP/2 error prevention
āāā repositories.yaml # Curated repo list
āāā automated_index_updater.py # Auto-update system
āāā unified_docs.db # Documentation database
How It Works
- Curation: Hand-picked repositories in
repositories.yamlwith quality scores - Discovery: Automatically finds popular repos (10k+ stars) via GitHub API
- Indexing: Downloads and indexes README, docs/, and documentation files
- Storage: SQLite with FTS5 for efficient full-text search
- Serving: FastMCP server provides tools for AI assistants
- Updates: Automated system keeps documentation current
šÆ Use Cases
For AI Developers
- Instant access to ML framework documentation
- Compare different approaches across libraries
- Find code examples and best practices
For Traders & Quants
- Complete algorithmic trading documentation
- Options pricing models and strategies
- Backtesting frameworks and market data APIs
For DevOps Engineers
- Kubernetes patterns and anti-patterns
- CI/CD pipeline examples
- Infrastructure as Code templates
For Full-Stack Developers
- Frontend framework comparisons
- Backend architecture patterns
- Database optimization techniques
š ļø Customization
Adding Custom Repositories
Edit repositories.yaml:
curated_repositories:
- repo: "owner/awesome-project"
category: "Web Development"
description: "An awesome web framework"
quality_score: 9
priority: high
doc_paths:
- "docs/"
- "README.md"
topics: ["web", "framework", "javascript"]
Creating Custom Categories
Add new categories to group related technologies:
- repo: "quantum-computing/qiskit"
category: "Quantum Computing" # New category!
description: "Quantum computing SDK"
š Expansion Reports
See our journey of building this massive knowledge base:
- EXPANSION_SUMMARY.md - Overview of all expansions
- TRADING_KNOWLEDGE_BASE_COMPLETE.md - Trading & Finance deep dive
- ULTIMATE_TRADING_EXPANSION.md - Final trading expansion details
- FINAL_EXPANSION_REPORT_2025.md - Complete 2025 expansion
š¤ Contributing
We welcome contributions! Please see our Contributing Guide for details.
Ways to Contribute
- Add high-quality repositories to
repositories.yaml - Improve search algorithms
- Add new MCP tools
- Enhance documentation
- Report bugs or request features
š License
This project is licensed under the MIT License - see the LICENSE file for details.
š Acknowledgments
- Model Context Protocol for enabling AI-assistant integrations
- All the amazing open-source projects indexed in our knowledge base
- The GitHub API for making documentation discovery possible
š¬ Contact
For questions, suggestions, or collaboration opportunities:
- Open an issue on GitHub
- Submit a pull request
- Star the repository to show support!
Built with ā¤ļø for developers who want their AI assistants to know everything!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.