Unified Docs Hub

Unified Docs Hub

Provides AI assistants with searchable access to documentation from 170+ curated repositories and 1000+ popular GitHub projects across 20+ categories including trading, AI/ML, DevOps, and web development.

Category
Visit Server

README

Verified on MseeP

šŸš€ Unified Docs Hub - The Ultimate MCP Documentation Server

License: MIT Python 3.8+ MCP Server

Transform your AI assistant into a documentation powerhouse! Unified Docs Hub is an MCP (Model Context Protocol) server that creates a massive, searchable knowledge base from 170+ curated repositories and 1000+ auto-discovered GitHub projects.

🌟 Why Unified Docs Hub?

Ever wished your AI assistant had instant access to ALL the documentation it needs? This MCP server solves that by:

  • šŸ“š Massive Knowledge Base: 170+ hand-picked repositories + 1000+ auto-discovered popular projects
  • šŸ” Lightning-Fast Search: Full-text search across 11,000+ documentation files in milliseconds
  • šŸ¤– AI-Optimized: Perfect for Claude, ChatGPT, and other AI assistants using MCP
  • šŸ“ˆ Self-Updating: Automated daily updates and weekly discovery of new repositories
  • šŸŽÆ Specialized Coverage: Deep expertise in Trading/Finance, AI/ML, DevOps, and 20+ categories

šŸŽ¬ Real-World Examples

Example 1: Building a Trading Bot

AI: "Show me how to build a crypto trading bot with backtesting"

You: unified_search(query="crypto trading bot backtesting", category="Trading & Finance")

Result: Instant access to documentation from:
- Freqtrade (advanced crypto trading bot)
- Backtrader (backtesting framework)
- CCXT (100+ exchange APIs)
- TA-Lib (200+ technical indicators)

Example 2: Learning Kubernetes

AI: "Explain Kubernetes deployment strategies"

You: unified_search(query="kubernetes deployment strategies", category="Cloud/DevOps")

Result: Documentation from:
- Official Kubernetes docs
- Helm charts best practices
- ArgoCD GitOps workflows
- Istio service mesh patterns

Example 3: Machine Learning Pipeline

AI: "Set up an MLOps pipeline with experiment tracking"

You: unified_search(query="mlops pipeline experiment tracking", category="MLOps")

Result: Comprehensive guides from:
- MLflow (experiment tracking)
- Kubeflow (distributed training)
- DVC (data versioning)
- Weights & Biases (visualization)

šŸ“Š What's Inside?

Knowledge Coverage

Category Repositories Highlights
Trading & Finance 64 repos Algorithmic trading, options, forex, HFT, portfolio optimization
AI/ML 20 repos LLMs, transformers, deep learning, NLP, computer vision
Cloud/DevOps 15 repos Kubernetes, Docker, Terraform, CI/CD, monitoring
Web Development 12 repos React, Vue, Next.js, full-stack frameworks
MLOps 6 repos ML lifecycle, experiment tracking, model deployment
Data Engineering 8 repos Apache Spark, Airflow, dbt, data pipelines
Observability 5 repos Prometheus, Grafana, OpenTelemetry, APM
Blockchain 5 repos Smart contracts, DeFi, Web3 development
20+ More Categories ... Security, databases, mobile, desktop, and more

Key Features

  • šŸ”„ Full-Text Search: SQLite FTS5 engine for sub-second searches across millions of lines
  • šŸ“ˆ Quality Scoring: Curated repos ranked by documentation quality (1-10 scale)
  • šŸ·ļø Smart Categorization: Browse by technology area or programming language
  • šŸ”„ Auto-Discovery: Continuously finds new popular repositories (10k+ stars)
  • šŸ’¾ Efficient Storage: Deduplication and compression keep the database lean
  • šŸ›”ļø Rate Limit Handling: Respects GitHub API limits with smart throttling

šŸš€ Quick Start

Prerequisites

  • Python 3.8 or higher
  • GitHub Personal Access Token (optional but recommended)
  • An MCP-compatible AI assistant (Claude Desktop, Continue.dev, etc.)

Installation

  1. Clone the repository
git clone https://github.com/yourusername/unified-docs-hub.git
cd unified-docs-hub
  1. Set up Python environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
pip install -r requirements.txt
  1. Configure your MCP client

For Claude Desktop, add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "unified-docs-hub": {
      "command": "/path/to/unified-docs-hub/venv/bin/python",
      "args": ["/path/to/unified-docs-hub/unified_docs_hub_server.py"],
      "env": {
        "GITHUB_TOKEN": "your-github-token-here"
      }
    }
  }
}
  1. Initial indexing (optional - the server will do this automatically)
# Index all curated repositories
python -c "import asyncio; from unified_docs_hub_server import index_repositories; asyncio.run(index_repositories('smart'))"

šŸ“‹ Available MCP Tools

unified_search

Search across all documentation with powerful filters.

# Basic search
unified_search("react hooks tutorial")

# Advanced search with filters
unified_search(
    query="transformer architecture attention",
    category="AI/ML",
    min_stars=5000
)

# Trading-specific search
unified_search(
    query="options greeks volatility smile",
    category="Trading & Finance"
)

index_repositories

Control repository indexing and discovery.

# Smart mode: Index curated + discover popular (recommended)
index_repositories(mode="smart")

# Update all existing repos
index_repositories(mode="update")

# Discover new trending repos
index_repositories(mode="discover", min_stars=5000, count=50)

list_repositories

Browse indexed repositories.

# List all Trading & Finance repos
list_repositories(category="Trading & Finance")

# Show only curated high-quality repos
list_repositories(source="curated", limit=20)

get_repository_docs

Get all documentation for a specific repository.

# Get all Kubernetes docs
get_repository_docs("kubernetes/kubernetes")

# Get trading library docs
get_repository_docs("freqtrade/freqtrade")

get_statistics

View comprehensive database statistics.

get_statistics()
# Returns: Total repos, documents, categories, languages, API status

šŸ¤– Automated Updates

The server includes automated indexing that keeps your knowledge base fresh:

Setup Automated Updates

# Run the setup script
./setup_automated_indexing.sh

# Or manually start the updater
python automated_index_updater.py --once  # Run once
python automated_index_updater.py          # Run continuously

Update Schedule

  • Daily: Updates all curated repositories (2 AM, 2 PM)
  • Weekly: Discovers new trending repositories
  • On-Demand: Manual updates via MCP tools

šŸ—ļø Architecture

Core Components

unified-docs-hub/
ā”œā”€ā”€ unified_docs_hub_server.py  # Main MCP server
ā”œā”€ā”€ database.py                 # SQLite + FTS5 engine
ā”œā”€ā”€ github_client.py            # GitHub API integration
ā”œā”€ā”€ response_limiter.py         # HTTP/2 error prevention
ā”œā”€ā”€ repositories.yaml           # Curated repo list
ā”œā”€ā”€ automated_index_updater.py  # Auto-update system
└── unified_docs.db            # Documentation database

How It Works

  1. Curation: Hand-picked repositories in repositories.yaml with quality scores
  2. Discovery: Automatically finds popular repos (10k+ stars) via GitHub API
  3. Indexing: Downloads and indexes README, docs/, and documentation files
  4. Storage: SQLite with FTS5 for efficient full-text search
  5. Serving: FastMCP server provides tools for AI assistants
  6. Updates: Automated system keeps documentation current

šŸŽÆ Use Cases

For AI Developers

  • Instant access to ML framework documentation
  • Compare different approaches across libraries
  • Find code examples and best practices

For Traders & Quants

  • Complete algorithmic trading documentation
  • Options pricing models and strategies
  • Backtesting frameworks and market data APIs

For DevOps Engineers

  • Kubernetes patterns and anti-patterns
  • CI/CD pipeline examples
  • Infrastructure as Code templates

For Full-Stack Developers

  • Frontend framework comparisons
  • Backend architecture patterns
  • Database optimization techniques

šŸ› ļø Customization

Adding Custom Repositories

Edit repositories.yaml:

curated_repositories:
  - repo: "owner/awesome-project"
    category: "Web Development"
    description: "An awesome web framework"
    quality_score: 9
    priority: high
    doc_paths:
      - "docs/"
      - "README.md"
    topics: ["web", "framework", "javascript"]

Creating Custom Categories

Add new categories to group related technologies:

  - repo: "quantum-computing/qiskit"
    category: "Quantum Computing"  # New category!
    description: "Quantum computing SDK"

šŸ“ˆ Expansion Reports

See our journey of building this massive knowledge base:

šŸ¤ Contributing

We welcome contributions! Please see our Contributing Guide for details.

Ways to Contribute

  • Add high-quality repositories to repositories.yaml
  • Improve search algorithms
  • Add new MCP tools
  • Enhance documentation
  • Report bugs or request features

šŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ™ Acknowledgments

  • Model Context Protocol for enabling AI-assistant integrations
  • All the amazing open-source projects indexed in our knowledge base
  • The GitHub API for making documentation discovery possible

šŸ“¬ Contact

For questions, suggestions, or collaboration opportunities:

  • Open an issue on GitHub
  • Submit a pull request
  • Star the repository to show support!

Built with ā¤ļø for developers who want their AI assistants to know everything!

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured