Mozilla Readability Parser MCP Server
A Python implementation of an MCP server that extracts webpage content, removes ads and non-essential elements, and transforms it into clean, LLM-optimized Markdown.
jmh108
README
MCP Server Readability Parser (Python / FastMCP)
Credits/Reference
This project is based on the original server-moz-readability implementation of emzimmer. (For the original README documentation, please refer to the original README.md.)
This Python implementation adapts the original concept to run as python based MCP using FastMCP
Mozilla Readability Parser MCP Server
A Python implementation of the Model Context Protocol (MCP) server that extracts and transforms webpage content into clean, LLM-optimized Markdown.
Table of Contents
Features
- Removes ads, navigation, footers and other non-essential content
- Converts clean HTML into well-formatted Markdown
- Handles errors gracefully
- Optimized for LLM processing
- Lightweight and fast
Why Not Just Fetch?
Unlike simple fetch requests, this server:
- Extracts only relevant content using Readability algorithm
- Eliminates noise like ads, popups, and navigation menus
- Reduces token usage by removing unnecessary HTML/CSS
- Provides consistent Markdown formatting for better LLM processing
- Handles complex web pages with dynamic content
Installation
- Clone the repository:
git clone https://github.com/jmh108/MCP-server-readability-python.git
cd MCP-server-readability-python
- Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate # On Windows use: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
Quick Start
- Start the server:
fastmcp run server.py
- Example request:
curl -X POST http://localhost:8000/tools/extract_content \
-H "Content-Type: application/json" \
-d '{"url": "https://example.com/article"}'
Tool Reference
extract_content
Fetches and transforms webpage content into clean Markdown.
Arguments:
{
"url": {
"type": "string",
"description": "The website URL to parse",
"required": true
}
}
Returns:
{
"content": "Markdown content..."
}
MCP Server Configuration
To configure the MCP server, add the following to your MCP settings file:
{
"mcpServers": {
"readability": {
"command": "fastmcp",
"args": ["run", "server.py"],
"env": {}
}
}
}
The server can then be started using the MCP protocol and accessed via the parse tool.
Dependencies
- readability-lxml - Content extraction
- html2text - HTML to Markdown conversion
- beautifulsoup4 - DOM parsing
- requests - HTTP requests
License
MIT License - See LICENSE for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Playwright MCP Server
Provides a server utilizing Model Context Protocol to enable human-like browser automation with Playwright, allowing control over browser actions such as navigation, element interaction, and scrolling.
@kazuph/mcp-fetch
Model Context Protocol server for fetching web content and processing images. This allows Claude Desktop (or any MCP client) to fetch web content and handle images appropriately.
Tavily MCP Server
Provides AI-powered web search capabilities using Tavily's search API, enabling LLMs to perform sophisticated web searches, get direct answers to questions, and search recent news articles.
mixpanel
Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.
Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.
mcp-shodan
MCP server for querying the Shodan API and Shodan CVEDB. This server provides tools for IP lookups, device searches, DNS lookups, vulnerability queries, CPE lookups, and more.
mcp-pinterest
A Pinterest Model Context Protocol (MCP) server for image search and information retrieval