FireCrawl MCP Server
A Model Context Protocol (MCP) server implementation that integrates with FireCrawl for advanced web scraping capabilities.
mendableai
Tools
firecrawl_scrape
Scrape a single webpage with advanced options for content extraction. Supports various formats including markdown, HTML, and screenshots. Can execute custom actions like clicking or scrolling before scraping.
firecrawl_map
Discover URLs from a starting point. Can use both sitemap.xml and HTML link discovery.
firecrawl_crawl
Start an asynchronous crawl of multiple pages from a starting URL. Supports depth control, path filtering, and webhook notifications.
firecrawl_batch_scrape
Scrape multiple URLs in batch mode. Returns a job ID that can be used to check status.
firecrawl_check_batch_status
Check the status of a batch scraping job.
firecrawl_check_crawl_status
Check the status of a crawl job.
firecrawl_search
Search and retrieve content from web pages with optional scraping. Returns SERP results by default (url, title, description) or full page content when scrapeOptions are provided.
firecrawl_extract
Extract structured information from web pages using LLM. Supports both cloud AI and self-hosted LLM extraction.
firecrawl_deep_research
Conduct deep research on a query using web crawling, search, and AI analysis.
README
Firecrawl MCP Server
A Model Context Protocol (MCP) server implementation that integrates with Firecrawl for web scraping capabilities.
Big thanks to @vrknetha, @cawstudios for the initial implementation!
You can also play around with our MCP Server on MCP.so's playground. Thanks to MCP.so for hosting and @gstarwd for integrating our server.
Features
- Scrape, crawl, search, extract, deep research and batch scrape support
- Web scraping with JS rendering
- URL discovery and crawling
- Web search with content extraction
- Automatic retries with exponential backoff
- Efficient batch processing with built-in rate limiting
- Credit usage monitoring for cloud API
- Comprehensive logging system
- Support for cloud and self-hosted Firecrawl instances
- Mobile/Desktop viewport support
- Smart content filtering with tag inclusion/exclusion
Installation
Running with npx
env FIRECRAWL_API_KEY=fc-YOUR_API_KEY npx -y firecrawl-mcp
Manual Installation
npm install -g firecrawl-mcp
Running on Cursor
Configuring Cursor 🖥️ Note: Requires Cursor version 0.45.6+ For the most up-to-date configuration instructions, please refer to the official Cursor documentation on configuring MCP servers: Cursor MCP Server Configuration Guide
To configure Firecrawl MCP in Cursor v0.45.6
- Open Cursor Settings
- Go to Features > MCP Servers
- Click "+ Add New MCP Server"
- Enter the following:
- Name: "firecrawl-mcp" (or your preferred name)
- Type: "command"
- Command:
env FIRECRAWL_API_KEY=your-api-key npx -y firecrawl-mcp
To configure Firecrawl MCP in Cursor v0.48.6
- Open Cursor Settings
- Go to Features > MCP Servers
- Click "+ Add new global MCP server"
- Enter the following code:
{ "mcpServers": { "firecrawl-mcp": { "command": "npx", "args": ["-y", "firecrawl-mcp"], "env": { "FIRECRAWL_API_KEY": "YOUR-API-KEY" } } } }
If you are using Windows and are running into issues, try
cmd /c "set FIRECRAWL_API_KEY=your-api-key && npx -y firecrawl-mcp"
Replace your-api-key
with your Firecrawl API key. If you don't have one yet, you can create an account and get it from https://www.firecrawl.dev/app/api-keys
After adding, refresh the MCP server list to see the new tools. The Composer Agent will automatically use Firecrawl MCP when appropriate, but you can explicitly request it by describing your web scraping needs. Access the Composer via Command+L (Mac), select "Agent" next to the submit button, and enter your query.
Running on Windsurf
Add this to your ./codeium/windsurf/model_config.json
:
{
"mcpServers": {
"mcp-server-firecrawl": {
"command": "npx",
"args": ["-y", "firecrawl-mcp"],
"env": {
"FIRECRAWL_API_KEY": "YOUR_API_KEY"
}
}
}
}
Installing via Smithery (Legacy)
To install Firecrawl for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @mendableai/mcp-server-firecrawl --client claude
Configuration
Environment Variables
Required for Cloud API
FIRECRAWL_API_KEY
: Your Firecrawl API key- Required when using cloud API (default)
- Optional when using self-hosted instance with
FIRECRAWL_API_URL
FIRECRAWL_API_URL
(Optional): Custom API endpoint for self-hosted instances- Example:
https://firecrawl.your-domain.com
- If not provided, the cloud API will be used (requires API key)
- Example:
Optional Configuration
Retry Configuration
FIRECRAWL_RETRY_MAX_ATTEMPTS
: Maximum number of retry attempts (default: 3)FIRECRAWL_RETRY_INITIAL_DELAY
: Initial delay in milliseconds before first retry (default: 1000)FIRECRAWL_RETRY_MAX_DELAY
: Maximum delay in milliseconds between retries (default: 10000)FIRECRAWL_RETRY_BACKOFF_FACTOR
: Exponential backoff multiplier (default: 2)
Credit Usage Monitoring
FIRECRAWL_CREDIT_WARNING_THRESHOLD
: Credit usage warning threshold (default: 1000)FIRECRAWL_CREDIT_CRITICAL_THRESHOLD
: Credit usage critical threshold (default: 100)
Configuration Examples
For cloud API usage with custom retry and credit monitoring:
# Required for cloud API
export FIRECRAWL_API_KEY=your-api-key
# Optional retry configuration
export FIRECRAWL_RETRY_MAX_ATTEMPTS=5 # Increase max retry attempts
export FIRECRAWL_RETRY_INITIAL_DELAY=2000 # Start with 2s delay
export FIRECRAWL_RETRY_MAX_DELAY=30000 # Maximum 30s delay
export FIRECRAWL_RETRY_BACKOFF_FACTOR=3 # More aggressive backoff
# Optional credit monitoring
export FIRECRAWL_CREDIT_WARNING_THRESHOLD=2000 # Warning at 2000 credits
export FIRECRAWL_CREDIT_CRITICAL_THRESHOLD=500 # Critical at 500 credits
For self-hosted instance:
# Required for self-hosted
export FIRECRAWL_API_URL=https://firecrawl.your-domain.com
# Optional authentication for self-hosted
export FIRECRAWL_API_KEY=your-api-key # If your instance requires auth
# Custom retry configuration
export FIRECRAWL_RETRY_MAX_ATTEMPTS=10
export FIRECRAWL_RETRY_INITIAL_DELAY=500 # Start with faster retries
Usage with Claude Desktop
Add this to your claude_desktop_config.json
:
{
"mcpServers": {
"mcp-server-firecrawl": {
"command": "npx",
"args": ["-y", "firecrawl-mcp"],
"env": {
"FIRECRAWL_API_KEY": "YOUR_API_KEY_HERE",
"FIRECRAWL_RETRY_MAX_ATTEMPTS": "5",
"FIRECRAWL_RETRY_INITIAL_DELAY": "2000",
"FIRECRAWL_RETRY_MAX_DELAY": "30000",
"FIRECRAWL_RETRY_BACKOFF_FACTOR": "3",
"FIRECRAWL_CREDIT_WARNING_THRESHOLD": "2000",
"FIRECRAWL_CREDIT_CRITICAL_THRESHOLD": "500"
}
}
}
}
System Configuration
The server includes several configurable parameters that can be set via environment variables. Here are the default values if not configured:
const CONFIG = {
retry: {
maxAttempts: 3, // Number of retry attempts for rate-limited requests
initialDelay: 1000, // Initial delay before first retry (in milliseconds)
maxDelay: 10000, // Maximum delay between retries (in milliseconds)
backoffFactor: 2, // Multiplier for exponential backoff
},
credit: {
warningThreshold: 1000, // Warn when credit usage reaches this level
criticalThreshold: 100, // Critical alert when credit usage reaches this level
},
};
These configurations control:
-
Retry Behavior
- Automatically retries failed requests due to rate limits
- Uses exponential backoff to avoid overwhelming the API
- Example: With default settings, retries will be attempted at:
- 1st retry: 1 second delay
- 2nd retry: 2 seconds delay
- 3rd retry: 4 seconds delay (capped at maxDelay)
-
Credit Usage Monitoring
- Tracks API credit consumption for cloud API usage
- Provides warnings at specified thresholds
- Helps prevent unexpected service interruption
- Example: With default settings:
- Warning at 1000 credits remaining
- Critical alert at 100 credits remaining
Rate Limiting and Batch Processing
The server utilizes Firecrawl's built-in rate limiting and batch processing capabilities:
- Automatic rate limit handling with exponential backoff
- Efficient parallel processing for batch operations
- Smart request queuing and throttling
- Automatic retries for transient errors
Available Tools
1. Scrape Tool (firecrawl_scrape
)
Scrape content from a single URL with advanced options.
{
"name": "firecrawl_scrape",
"arguments": {
"url": "https://example.com",
"formats": ["markdown"],
"onlyMainContent": true,
"waitFor": 1000,
"timeout": 30000,
"mobile": false,
"includeTags": ["article", "main"],
"excludeTags": ["nav", "footer"],
"skipTlsVerification": false
}
}
2. Batch Scrape Tool (firecrawl_batch_scrape
)
Scrape multiple URLs efficiently with built-in rate limiting and parallel processing.
{
"name": "firecrawl_batch_scrape",
"arguments": {
"urls": ["https://example1.com", "https://example2.com"],
"options": {
"formats": ["markdown"],
"onlyMainContent": true
}
}
}
Response includes operation ID for status checking:
{
"content": [
{
"type": "text",
"text": "Batch operation queued with ID: batch_1. Use firecrawl_check_batch_status to check progress."
}
],
"isError": false
}
3. Check Batch Status (firecrawl_check_batch_status
)
Check the status of a batch operation.
{
"name": "firecrawl_check_batch_status",
"arguments": {
"id": "batch_1"
}
}
4. Search Tool (firecrawl_search
)
Search the web and optionally extract content from search results.
{
"name": "firecrawl_search",
"arguments": {
"query": "your search query",
"limit": 5,
"lang": "en",
"country": "us",
"scrapeOptions": {
"formats": ["markdown"],
"onlyMainContent": true
}
}
}
5. Crawl Tool (firecrawl_crawl
)
Start an asynchronous crawl with advanced options.
{
"name": "firecrawl_crawl",
"arguments": {
"url": "https://example.com",
"maxDepth": 2,
"limit": 100,
"allowExternalLinks": false,
"deduplicateSimilarURLs": true
}
}
6. Extract Tool (firecrawl_extract
)
Extract structured information from web pages using LLM capabilities. Supports both cloud AI and self-hosted LLM extraction.
{
"name": "firecrawl_extract",
"arguments": {
"urls": ["https://example.com/page1", "https://example.com/page2"],
"prompt": "Extract product information including name, price, and description",
"systemPrompt": "You are a helpful assistant that extracts product information",
"schema": {
"type": "object",
"properties": {
"name": { "type": "string" },
"price": { "type": "number" },
"description": { "type": "string" }
},
"required": ["name", "price"]
},
"allowExternalLinks": false,
"enableWebSearch": false,
"includeSubdomains": false
}
}
Example response:
{
"content": [
{
"type": "text",
"text": {
"name": "Example Product",
"price": 99.99,
"description": "This is an example product description"
}
}
],
"isError": false
}
Extract Tool Options:
urls
: Array of URLs to extract information fromprompt
: Custom prompt for the LLM extractionsystemPrompt
: System prompt to guide the LLMschema
: JSON schema for structured data extractionallowExternalLinks
: Allow extraction from external linksenableWebSearch
: Enable web search for additional contextincludeSubdomains
: Include subdomains in extraction
When using a self-hosted instance, the extraction will use your configured LLM. For cloud API, it uses Firecrawl's managed LLM service.
7. Deep Research Tool (firecrawl_deep_research)
Conduct deep web research on a query using intelligent crawling, search, and LLM analysis.
{
"name": "firecrawl_deep_research",
"arguments": {
"query": "how does carbon capture technology work?",
"maxDepth": 3,
"timeLimit": 120,
"maxUrls": 50
}
}
Arguments:
- query (string, required): The research question or topic to explore.
- maxDepth (number, optional): Maximum recursive depth for crawling/search (default: 3).
- timeLimit (number, optional): Time limit in seconds for the research session (default: 120).
- maxUrls (number, optional): Maximum number of URLs to analyze (default: 50).
Returns:
- Final analysis generated by an LLM based on research. (data.finalAnalysis)
- May also include structured activities and sources used in the research process.
8. Generate LLMs.txt Tool (firecrawl_generate_llmstxt)
Generate a standardized llms.txt (and optionally llms-full.txt) file for a given domain. This file defines how large language models should interact with the site.
{
"name": "firecrawl_generate_llmstxt",
"arguments": {
"url": "https://example.com",
"maxUrls": 20,
"showFullText": true
}
}
Arguments:
- url (string, required): The base URL of the website to analyze.
- maxUrls (number, optional): Max number of URLs to include (default: 10).
- showFullText (boolean, optional): Whether to include llms-full.txt contents in the response.
Returns:
- Generated llms.txt file contents and optionally the llms-full.txt (data.llmstxt and/or data.llmsfulltxt)
Logging System
The server includes comprehensive logging:
- Operation status and progress
- Performance metrics
- Credit usage monitoring
- Rate limit tracking
- Error conditions
Example log messages:
[INFO] Firecrawl MCP Server initialized successfully
[INFO] Starting scrape for URL: https://example.com
[INFO] Batch operation queued with ID: batch_1
[WARNING] Credit usage has reached warning threshold
[ERROR] Rate limit exceeded, retrying in 2s...
Error Handling
The server provides robust error handling:
- Automatic retries for transient errors
- Rate limit handling with backoff
- Detailed error messages
- Credit usage warnings
- Network resilience
Example error response:
{
"content": [
{
"type": "text",
"text": "Error: Rate limit exceeded. Retrying in 2 seconds..."
}
],
"isError": true
}
Development
# Install dependencies
npm install
# Build
npm run build
# Run tests
npm test
Contributing
- Fork the repository
- Create your feature branch
- Run tests:
npm test
- Submit a pull request
License
MIT License - see LICENSE file for details
Recommended Servers
Mult Fetch MCP Server
A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to
Exa MCP
A Model Context Protocol server that enables AI assistants like Claude to perform real-time web searches using the Exa AI Search API in a safe and controlled manner.
Perplexity Chat MCP Server
MCP Server for the Perplexity API.
Web Research Server
A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.

Youtube Translate
A Model Context Protocol server that enables access to YouTube video content through transcripts, translations, summaries, and subtitle generation in various languages.
PubMedSearch
A Model Content Protocol server that provides tools to search and retrieve academic papers from PubMed database.
Aindreyway Codex Keeper
Serves as a guardian of development knowledge, providing AI assistants with curated access to latest documentation and best practices.
Perplexity Deep Research
A server that allows AI assistants to perform web searches using Perplexity's sonar-deep-research model with citation support.