
Youtube Translate Featured
A Model Context Protocol server that enables access to YouTube video content through transcripts, translations, summaries, and subtitle generation in various languages.
brianshin22
README
YouTube Translate MCP
A Model Context Protocol (MCP) server for accessing the YouTube Translate API, allowing you to obtain transcripts, translations, and summaries of YouTube videos.
Features
- Get transcripts of YouTube videos
- Translate transcripts to different languages
- Generate subtitles in SRT or VTT format
- Create summaries of video content
- Search for specific content within videos
Installation
Installing via Smithery
To install youtube-translate-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @brianshin22/youtube-translate-mcp --client claude
Installing Manually
This package requires Python 3.12 or higher:
# Using uv (recommended)
uv pip install youtube-translate-mcp
# Using pip
pip install youtube-translate-mcp
Or install from source:
# Clone the repository
git clone https://github.com/yourusername/youtube-translate-mcp.git
cd youtube-translate-mcp
# Using uv (recommended)
uv pip install -e .
# Using pip
pip install -e .
Usage
To run the server:
# Using stdio transport (default)
YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp
# Using SSE transport
YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp --transport sse --port 8000
Docker
You can also run the server using Docker:
# Build the Docker image
docker build -t youtube-translate-mcp .
# Run with stdio transport
docker run -e YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp
# Run with SSE transport
docker run -p 8000:8000 -e YOUTUBE_TRANSLATE_API_KEY=your_api_key youtube-translate-mcp --transport sse
Environment Variables
YOUTUBE_TRANSLATE_API_KEY
: Required. Your API key for accessing the YouTube Translate API.
Deployment with Smithery
This package includes a smithery.yaml
file for easy deployment with Smithery.
To deploy, set the YOUTUBE_TRANSLATE_API_KEY
configuration parameter to your YouTube Translate API key.
Development
Prerequisites
- Python 3.12+
- Docker (optional)
Setup
# Create and activate a virtual environment using uv (recommended)
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install dependencies using uv
uv pip install -e .
# Alternatively, with standard tools
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
pip install -e .
Testing with Claude Desktop
To test with Claude Desktop (macOS/Windows only), you'll need to add your server to the Claude Desktop configuration file located at ~/Library/Application Support/Claude/claude_desktop_config.json
.
Method 1: Local Development
Use this method if you want to test your local development version:
{
"mcpServers": {
"youtube-translate": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/youtube-translate-mcp",
"run",
"-m", "youtube_translate_mcp"
],
"env": {
"YOUTUBE_TRANSLATE_API_KEY": "YOUR_API_KEY"
}
}
}
}
Make sure to replace /ABSOLUTE/PATH/TO/youtube-translate-mcp
with the actual path to your project directory.
Method 2: Docker-based Testing
If you prefer to test using Docker (recommended for more reproducible testing):
{
"mcpServers": {
"youtube-translate": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"YOUTUBE_TRANSLATE_API_KEY",
"youtube-translate-mcp"
],
"env": {
"YOUTUBE_TRANSLATE_API_KEY": "YOUR_API_KEY"
}
}
}
}
Replace YOUR_API_KEY
with your actual YouTube Translate API key.
For more information on using MCP servers with Claude Desktop, see the MCP documentation.
Debugging
- The normal MCP Inspector has a built in timeout for MCP tool calls, which is generally too short for these video processing calls (as of March 13, 2025). Better to use Claude Desktop and look at the MCP logs from Claude at ~/Library/Logs/Claude/mcp-server-{asfasf}.log.
- Can do tail -f {log-file}.log to follow as you interact with Claude.
License
MIT
Recommended Servers
Mult Fetch MCP Server
A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to
Exa MCP
A Model Context Protocol server that enables AI assistants like Claude to perform real-time web searches using the Exa AI Search API in a safe and controlled manner.
Web Research Server
A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.
Perplexity Chat MCP Server
MCP Server for the Perplexity API.
PubMedSearch
A Model Content Protocol server that provides tools to search and retrieve academic papers from PubMed database.
Aindreyway Codex Keeper
Serves as a guardian of development knowledge, providing AI assistants with curated access to latest documentation and best practices.
Perplexity Deep Research
A server that allows AI assistants to perform web searches using Perplexity's sonar-deep-research model with citation support.

Docx Document Processing Service
A powerful Word document processing service based on FastMCP, enabling AI assistants to create, edit, and manage docx files with full formatting support. Preserves original styles when editing content.