
Figma MCP Server with Chunking
A Model Context Protocol server for interacting with the Figma API that handles large Figma files efficiently through memory-aware chunking and pagination capabilities.
ArchimedesCrypto
Tools
get_components
Get components from a Figma file
get_styles
Get styles from a Figma file
get_file_versions
Get version history of a Figma file
get_file_comments
Get comments on a Figma file
get_file_data
Get Figma file data with chunking and pagination
list_files
List files in a project or team
get_file_nodes
Get specific nodes from a Figma file
README
Figma MCP Server with Chunking
A Model Context Protocol (MCP) server for interacting with the Figma API, featuring memory-efficient chunking and pagination capabilities for handling large Figma files.
Overview
This MCP server provides a robust interface to the Figma API with built-in memory management features. It's designed to handle large Figma files efficiently by breaking down operations into manageable chunks and implementing pagination where necessary.
Key Features
- Memory-aware processing with configurable limits
- Chunked data retrieval for large files
- Pagination support for all listing operations
- Node type filtering
- Progress tracking
- Configurable chunk sizes
- Resume capability for interrupted operations
- Debug logging
- Config file support
Installation
Installing via Smithery
To install Figma MCP Server with Chunking for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @ArchimedesCrypto/figma-mcp-chunked --client claude
Manual Installation
# Clone the repository
git clone [repository-url]
cd figma-mcp-chunked
# Install dependencies
npm install
# Build the project
npm run build
Configuration
Environment Variables
FIGMA_ACCESS_TOKEN
: Your Figma API access token
Config File
You can provide configuration via a JSON file using the --config
flag:
{
"mcpServers": {
"figma": {
"env": {
"FIGMA_ACCESS_TOKEN": "your-access-token"
}
}
}
}
Usage:
node build/index.js --config=path/to/config.json
Tools
get_file_data (New)
Retrieves Figma file data with memory-efficient chunking and pagination.
{
"name": "get_file_data",
"arguments": {
"fileKey": "your-file-key",
"accessToken": "your-access-token",
"pageSize": 100, // Optional: nodes per chunk
"maxMemoryMB": 512, // Optional: memory limit
"nodeTypes": ["FRAME", "COMPONENT"], // Optional: filter by type
"cursor": "next-page-token", // Optional: resume from last position
"depth": 2 // Optional: traversal depth
}
}
Response:
{
"nodes": [...],
"memoryUsage": 256.5,
"nextCursor": "next-page-token",
"hasMore": true
}
list_files
Lists files with pagination support.
{
"name": "list_files",
"arguments": {
"project_id": "optional-project-id",
"team_id": "optional-team-id"
}
}
get_file_versions
Retrieves version history in chunks.
{
"name": "get_file_versions",
"arguments": {
"file_key": "your-file-key"
}
}
get_file_comments
Retrieves comments with pagination.
{
"name": "get_file_comments",
"arguments": {
"file_key": "your-file-key"
}
}
get_file_info
Retrieves file information with chunked node traversal.
{
"name": "get_file_info",
"arguments": {
"file_key": "your-file-key",
"depth": 2, // Optional: traversal depth
"node_id": "specific-node-id" // Optional: start from specific node
}
}
get_components
Retrieves components with chunking support.
{
"name": "get_components",
"arguments": {
"file_key": "your-file-key"
}
}
get_styles
Retrieves styles with chunking support.
{
"name": "get_styles",
"arguments": {
"file_key": "your-file-key"
}
}
get_file_nodes
Retrieves specific nodes with chunking support.
{
"name": "get_file_nodes",
"arguments": {
"file_key": "your-file-key",
"ids": ["node-id-1", "node-id-2"]
}
}
Memory Management
The server implements several strategies to manage memory efficiently:
Chunking Strategy
- Configurable chunk sizes via
pageSize
- Memory usage monitoring
- Automatic chunk size adjustment based on memory pressure
- Progress tracking per chunk
- Resume capability using cursors
Best Practices
- Start with smaller chunk sizes (50-100 nodes) and adjust based on performance
- Monitor memory usage through the response metadata
- Use node type filtering when possible to reduce data load
- Implement pagination for large datasets
- Use the resume capability for very large files
Configuration Options
pageSize
: Number of nodes per chunk (default: 100)maxMemoryMB
: Maximum memory usage in MB (default: 512)nodeTypes
: Filter specific node typesdepth
: Control traversal depth for nested structures
Debug Logging
The server includes comprehensive debug logging:
// Debug log examples
[MCP Debug] Loading config from config.json
[MCP Debug] Access token found xxxxxxxx...
[MCP Debug] Request { tool: 'get_file_data', arguments: {...} }
[MCP Debug] Response size 2.5 MB
Error Handling
The server provides detailed error messages and suggestions:
// Memory limit error
"Response size too large. Try using a smaller depth value or specifying a node_id."
// Invalid parameters
"Missing required parameters: fileKey and accessToken"
// API errors
"Figma API error: [detailed message]"
Troubleshooting
Common Issues
-
Memory Errors
- Reduce chunk size
- Use node type filtering
- Implement pagination
- Specify smaller depth values
-
Performance Issues
- Monitor memory usage
- Adjust chunk sizes
- Use appropriate node type filters
- Implement caching for frequently accessed data
-
API Limits
- Implement rate limiting
- Use pagination
- Cache responses when possible
Debug Mode
Enable debug logging for detailed information:
# Set debug environment variable
export DEBUG=true
Contributing
Contributions are welcome! Please read our contributing guidelines and submit pull requests to our repository.
License
This project is licensed under the MIT License - see the LICENSE file for details.
Recommended Servers
Mult Fetch MCP Server
A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to
Exa MCP
A Model Context Protocol server that enables AI assistants like Claude to perform real-time web searches using the Exa AI Search API in a safe and controlled manner.
Perplexity Chat MCP Server
MCP Server for the Perplexity API.
Web Research Server
A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.

Youtube Translate
A Model Context Protocol server that enables access to YouTube video content through transcripts, translations, summaries, and subtitle generation in various languages.
PubMedSearch
A Model Content Protocol server that provides tools to search and retrieve academic papers from PubMed database.
Aindreyway Codex Keeper
Serves as a guardian of development knowledge, providing AI assistants with curated access to latest documentation and best practices.
Perplexity Deep Research
A server that allows AI assistants to perform web searches using Perplexity's sonar-deep-research model with citation support.