Brave Search
Web and local search using Brave's Search API
modelcontextprotocol
README
MCP TypeScript SDK

Table of Contents
- Overview
- Installation
- Quickstart
- What is MCP?
- Core Concepts
- Running Your Server
- Examples
- Advanced Usage
Overview
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This TypeScript SDK implements the full MCP specification, making it easy to:
- Build MCP clients that can connect to any MCP server
- Create MCP servers that expose resources, prompts and tools
- Use standard transports like stdio and SSE
- Handle all MCP protocol messages and lifecycle events
Installation
npm install @modelcontextprotocol/sdk
Quick Start
Let's create a simple MCP server that exposes a calculator tool and some data:
import { McpServer, ResourceTemplate } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { z } from "zod";
// Create an MCP server
const server = new McpServer({
name: "Demo",
version: "1.0.0"
});
// Add an addition tool
server.tool("add",
{ a: z.number(), b: z.number() },
async ({ a, b }) => ({
content: [{ type: "text", text: String(a + b) }]
})
);
// Add a dynamic greeting resource
server.resource(
"greeting",
new ResourceTemplate("greeting://{name}", { list: undefined }),
async (uri, { name }) => ({
contents: [{
uri: uri.href,
text: `Hello, ${name}!`
}]
})
);
// Start receiving messages on stdin and sending messages on stdout
const transport = new StdioServerTransport();
await server.connect(transport);
What is MCP?
The Model Context Protocol (MCP) lets you build servers that expose data and functionality to LLM applications in a secure, standardized way. Think of it like a web API, but specifically designed for LLM interactions. MCP servers can:
- Expose data through Resources (think of these sort of like GET endpoints; they are used to load information into the LLM's context)
- Provide functionality through Tools (sort of like POST endpoints; they are used to execute code or otherwise produce a side effect)
- Define interaction patterns through Prompts (reusable templates for LLM interactions)
- And more!
Core Concepts
Server
The McpServer is your core interface to the MCP protocol. It handles connection management, protocol compliance, and message routing:
const server = new McpServer({
name: "My App",
version: "1.0.0"
});
Resources
Resources are how you expose data to LLMs. They're similar to GET endpoints in a REST API - they provide data but shouldn't perform significant computation or have side effects:
// Static resource
server.resource(
"config",
"config://app",
async (uri) => ({
contents: [{
uri: uri.href,
text: "App configuration here"
}]
})
);
// Dynamic resource with parameters
server.resource(
"user-profile",
new ResourceTemplate("users://{userId}/profile", { list: undefined }),
async (uri, { userId }) => ({
contents: [{
uri: uri.href,
text: `Profile data for user ${userId}`
}]
})
);
Tools
Tools let LLMs take actions through your server. Unlike resources, tools are expected to perform computation and have side effects:
// Simple tool with parameters
server.tool(
"calculate-bmi",
{
weightKg: z.number(),
heightM: z.number()
},
async ({ weightKg, heightM }) => ({
content: [{
type: "text",
text: String(weightKg / (heightM * heightM))
}]
})
);
// Async tool with external API call
server.tool(
"fetch-weather",
{ city: z.string() },
async ({ city }) => {
const response = await fetch(`https://api.weather.com/${city}`);
const data = await response.text();
return {
content: [{ type: "text", text: data }]
};
}
);
Prompts
Prompts are reusable templates that help LLMs interact with your server effectively:
server.prompt(
"review-code",
{ code: z.string() },
({ code }) => ({
messages: [{
role: "user",
content: {
type: "text",
text: `Please review this code:\n\n${code}`
}
}]
})
);
Running Your Server
MCP servers in TypeScript need to be connected to a transport to communicate with clients. How you start the server depends on the choice of transport:
stdio
For command-line tools and direct integrations:
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
const server = new McpServer({
name: "example-server",
version: "1.0.0"
});
// ... set up server resources, tools, and prompts ...
const transport = new StdioServerTransport();
await server.connect(transport);
HTTP with SSE
For remote servers, start a web server with a Server-Sent Events (SSE) endpoint, and a separate endpoint for the client to send its messages to:
import express, { Request, Response } from "express";
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { SSEServerTransport } from "@modelcontextprotocol/sdk/server/sse.js";
const server = new McpServer({
name: "example-server",
version: "1.0.0"
});
// ... set up server resources, tools, and prompts ...
const app = express();
// to support multiple simultaneous connections we have a lookup object from
// sessionId to transport
const transports: {[sessionId: string]: SSEServerTransport} = {};
app.get("/sse", async (_: Request, res: Response) => {
const transport = new SSEServerTransport('/messages', res);
transports[transport.sessionId] = transport;
res.on("close", () => {
delete transports[transport.sessionId];
});
await server.connect(transport);
});
app.post("/messages", async (req: Request, res: Response) => {
const sessionId = req.query.sessionId as string;
const transport = transports[sessionId];
if (transport) {
await transport.handlePostMessage(req, res);
} else {
res.status(400).send('No transport found for sessionId');
}
});
app.listen(3001);
Testing and Debugging
To test your server, you can use the MCP Inspector. See its README for more information.
Examples
Echo Server
A simple server demonstrating resources, tools, and prompts:
import { McpServer, ResourceTemplate } from "@modelcontextprotocol/sdk/server/mcp.js";
import { z } from "zod";
const server = new McpServer({
name: "Echo",
version: "1.0.0"
});
server.resource(
"echo",
new ResourceTemplate("echo://{message}", { list: undefined }),
async (uri, { message }) => ({
contents: [{
uri: uri.href,
text: `Resource echo: ${message}`
}]
})
);
server.tool(
"echo",
{ message: z.string() },
async ({ message }) => ({
content: [{ type: "text", text: `Tool echo: ${message}` }]
})
);
server.prompt(
"echo",
{ message: z.string() },
({ message }) => ({
messages: [{
role: "user",
content: {
type: "text",
text: `Please process this message: ${message}`
}
}]
})
);
SQLite Explorer
A more complex example showing database integration:
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import sqlite3 from "sqlite3";
import { promisify } from "util";
import { z } from "zod";
const server = new McpServer({
name: "SQLite Explorer",
version: "1.0.0"
});
// Helper to create DB connection
const getDb = () => {
const db = new sqlite3.Database("database.db");
return {
all: promisify<string, any[]>(db.all.bind(db)),
close: promisify(db.close.bind(db))
};
};
server.resource(
"schema",
"schema://main",
async (uri) => {
const db = getDb();
try {
const tables = await db.all(
"SELECT sql FROM sqlite_master WHERE type='table'"
);
return {
contents: [{
uri: uri.href,
text: tables.map((t: {sql: string}) => t.sql).join("\n")
}]
};
} finally {
await db.close();
}
}
);
server.tool(
"query",
{ sql: z.string() },
async ({ sql }) => {
const db = getDb();
try {
const results = await db.all(sql);
return {
content: [{
type: "text",
text: JSON.stringify(results, null, 2)
}]
};
} catch (err: unknown) {
const error = err as Error;
return {
content: [{
type: "text",
text: `Error: ${error.message}`
}],
isError: true
};
} finally {
await db.close();
}
}
);
Advanced Usage
Low-Level Server
For more control, you can use the low-level Server class directly:
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import {
ListPromptsRequestSchema,
GetPromptRequestSchema
} from "@modelcontextprotocol/sdk/types.js";
const server = new Server(
{
name: "example-server",
version: "1.0.0"
},
{
capabilities: {
prompts: {}
}
}
);
server.setRequestHandler(ListPromptsRequestSchema, async () => {
return {
prompts: [{
name: "example-prompt",
description: "An example prompt template",
arguments: [{
name: "arg1",
description: "Example argument",
required: true
}]
}]
};
});
server.setRequestHandler(GetPromptRequestSchema, async (request) => {
if (request.params.name !== "example-prompt") {
throw new Error("Unknown prompt");
}
return {
description: "Example prompt",
messages: [{
role: "user",
content: {
type: "text",
text: "Example prompt text"
}
}]
};
});
const transport = new StdioServerTransport();
await server.connect(transport);
Writing MCP Clients
The SDK provides a high-level client interface:
import { Client } from "@modelcontextprotocol/sdk/client/index.js";
import { StdioClientTransport } from "@modelcontextprotocol/sdk/client/stdio.js";
const transport = new StdioClientTransport({
command: "node",
args: ["server.js"]
});
const client = new Client(
{
name: "example-client",
version: "1.0.0"
},
{
capabilities: {
prompts: {},
resources: {},
tools: {}
}
}
);
await client.connect(transport);
// List prompts
const prompts = await client.listPrompts();
// Get a prompt
const prompt = await client.getPrompt("example-prompt", {
arg1: "value"
});
// List resources
const resources = await client.listResources();
// Read a resource
const resource = await client.readResource("file:///example.txt");
// Call a tool
const result = await client.callTool({
name: "example-tool",
arguments: {
arg1: "value"
}
});
Documentation
Contributing
Issues and pull requests are welcome on GitHub at https://github.com/modelcontextprotocol/typescript-sdk.
License
This project is licensed under the MIT License—see the LICENSE file for details.
Recommended Servers
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
MCP DuckDB Knowledge Graph Memory Server
A memory server for Claude that stores and retrieves knowledge graph data in DuckDB, enhancing performance and query capabilities for conversations with persistent user information.

Airtable MCP Server
A Model Context Protocol server that provides tools for programmatically managing Airtable bases, tables, fields, and records through Claude Desktop or other MCP clients.
Verodat MCP Server
An MCP server that integrates Verodat's data management capabilities with AI systems like Claude Desktop, enabling users to manage accounts, workspaces, and datasets, as well as perform AI-powered queries on their data.
Supavec MCP Server
Ragie Model Context Protocol Server
An MCP server that enables AI models to retrieve information from Ragie's knowledge base through a simple 'retrieve' tool.

Needle MCP Server
A server that allows users to manage documents and perform Claude-powered searches using Needle through the Claude Desktop application.
Notion MCP Server
A Model Context Protocol server that connects Claude and other AI assistants to your Notion workspace, allowing AIs to interact with databases, pages, and blocks.
Kintone MCP Server
A Model Context Protocol server that enables Claude and other AI assistants to access and update Kintone data through natural language commands, supporting operations like record management, file handling, app administration, and space collaboration.
Memex
A tool for Model Context Protocol (MCP) that allows you to analyze web content and add it to your knowledge base, storing content as Markdown files for easy viewing with tools like Obsidian.