Discover Awesome MCP Servers
Extend your agent with 20,381 capabilities via MCP servers.
- All20,381
- Developer Tools3,867
- Search1,714
- Research & Data1,557
- AI Integration Systems229
- Cloud Platforms219
- Data & App Analysis181
- Database Interaction177
- Remote Shell Execution165
- Browser Automation147
- Databases145
- Communication137
- AI Content Generation127
- OS Automation120
- Programming Docs Access109
- Content Fetching108
- Note Taking97
- File Systems96
- Version Control93
- Finance91
- Knowledge & Memory90
- Monitoring79
- Security71
- Image & Video Processing69
- Digital Note Management66
- AI Memory Systems62
- Advanced AI Reasoning59
- Git Management Tools58
- Cloud Storage51
- Entertainment & Media43
- Virtualization42
- Location Services35
- Web Automation & Stealth32
- Media Content Processing32
- Calendar Management26
- Ecommerce & Retail18
- Speech Processing18
- Customer Data Platforms16
- Travel & Transportation14
- Education & Learning Tools13
- Home Automation & IoT13
- Web Search Integration12
- Health & Wellness10
- Customer Support10
- Marketing9
- Games & Gamification8
- Google Cloud Integrations7
- Art & Culture4
- Language Translation3
- Legal & Compliance2
Remote MCP Server (Authless)
A template for deploying MCP servers on Cloudflare Workers without authentication. Provides a foundation for creating custom tools accessible via Server-Sent Events from both web-based and desktop MCP clients.
🦉 OWL x WhatsApp MCP Server Integration
Chroma MCP Server
Servidor MCP para integração do ChromaDB no Cursor com modelos de IA compatíveis com MCP.
LW MCP Agents
A lightweight framework for building and orchestrating AI agents through the Model Context Protocol, enabling users to create scalable multi-agent systems using only configuration files.
Wisembly MCP Server
Enables interaction with the Wisembly API to fetch and manage event data, including event details, participants, organizers, and locations.
MCP Picnic
Enables AI assistants to interact with Picnic online supermarket for grocery shopping, meal planning, cart management, delivery tracking, and budget-conscious shopping in Netherlands and Germany.
Ecosyste.ms Package Data
Enables querying package ecosystem data from ecosyste.ms, including package metadata, versions, security advisories, dependencies, and repository information across 40+ package registries with fast local SQLite lookups and API fallback.
MCP Reference Server
A comprehensive reference implementation demonstrating all features of the Model Context Protocol (MCP) specification, serving as documentation, learning resource, and testing tool for MCP implementations.
Image Process MCP Server
Um servidor MCP para processamento de imagens que utiliza a biblioteca Sharp para fornecer funcionalidades de manipulação de imagem.
Smart Home MCP Server
Enables control of TP-Link Kasa smart home devices through natural language commands. Supports device control, lighting scenes, room-based organization, and real-time status monitoring for smart plugs and bulbs.
Mobile Development MCP
Este é um MCP projetado para gerenciar e interagir com dispositivos móveis e simuladores.
gitSERVER README Manager
Enables automated README file management for development projects through MCP tools for content creation and summarization, resources for direct file access, and prompts for AI-powered documentation analysis.
🧠 MCP PID Wallet Verifier
Um servidor MCP leve e amigável para IA que permite que qualquer agente de IA ou assistente compatível com MCP inicie e verifique uma apresentação de credenciais PID (Dados de Identidade Pessoal) via OIDC4VP.
Domain-MCP
A simple MCP server that enables AI assistants to perform domain research including availability checking, WHOIS lookups, DNS record retrieval, and finding expired domains without requiring API keys.
Brainrot MCP
Automatically plays Subway Surfers gameplay in the background during coding sessions to provide continuous dopamine stimulation. Activates when users start coding conversations and stops when finished, requiring zero manual intervention.
MCP-Weather Server
An intermediate agent server that enhances LLMs with weather data capabilities using the Model Context Protocol (MCP) framework, enabling retrieval of real-time weather information.
Prover MCP
Enables AI assistants to control Succinct Prover Network operations on Sepolia testnet, including running provers, calibrating hardware, staking tokens, and monitoring earnings through natural language commands.
MCP Server with Azure Communication Services Email
Azure Communication Services - Email MCP (MCP pode se referir a "Managed Communication Provider" ou outro termo específico dependendo do contexto. Se for o caso, forneça mais contexto para uma tradução mais precisa.)
termiAgent
termiAgent é um assistente de linha de comando impulsionado por LLM que fornece configurações de função de plug-in para criar fluxos de trabalho para diferentes tarefas. Ao mesmo tempo, é um mcp-client que pode se conectar livremente aos seus mcp-servers.
Memory-IA MCP Server
Enables AI agents with persistent memory using SQLite and local LLM models through Ollama integration. Provides chat with context retention and multi-client support across VS Code, Gemini-CLI, and terminal interfaces.
Model Context Protocol (MCP) + Spring Boot Integration
Testando um novo recurso do servidor MCP usando Spring Boot.
Sharesight MCP Server
Connects AI assistants to the Sharesight portfolio tracking platform via the v3 API for managing investment portfolios and holdings. It enables natural language queries for performance reporting, dividend tracking, and custom investment management.
MCP Remote Control
An MCP server that enables AI assistants to control TVs on a local network through natural language commands. It currently supports Roku devices, allowing users to launch apps, manage playback, and navigate menus.
MCP Montano Server
copilot-memory-store
Enables AI tools like GitHub Copilot to manage and persist context using a local JSON-based memory store. Provides CLI, MCP server, and VS Code integration for storing, retrieving, and managing context entries.
Firecrawl MCP Server
A Model Context Protocol server that enables web scraping, crawling, and content extraction capabilities through integration with Firecrawl.
BinjaLattice
Interface de plugin para comunicações remotas com o banco de dados do Binary Ninja e o servidor MCP para interagir com LLMs.
Fider MCP Server
Enables interaction with Fider customer feedback platforms, supporting post management, commenting, tagging, and status updates through natural language commands.
mcpserver-semantickernel-client-demo
Absolutely! Here's a breakdown of how you could create a very basic C# MCP (Message Control Protocol) server using Aspire, and then consume it with Semantic Kernel. I'll focus on simplicity and clarity. **Conceptual Overview** 1. **MCP Server (Aspire-Hosted):** * Listens for incoming MCP messages on a specific port. * Parses the message (in this example, a very basic format). * Performs a simple action based on the message content. * Sends a response back to the client. 2. **Semantic Kernel Client:** * Uses Semantic Kernel to orchestrate a task. * As part of that task, it sends an MCP message to the server. * Receives the response from the server. * Uses the response within the Semantic Kernel workflow. **Implementation** **1. Create a new Aspire Application** ```bash dotnet new aspire -o MyAspireApp cd MyAspireApp ``` **2. Create the MCP Server Project** ```bash dotnet new worker -o MyAspireApp.McpServer dotnet add MyAspireApp.McpServer package Microsoft.Extensions.Hosting dotnet add MyAspireApp.McpServer package Microsoft.Extensions.ServiceDiscovery dotnet add MyAspireApp.McpServer package Microsoft.Extensions.Http ``` **3. Create the Semantic Kernel Client Project** ```bash dotnet new console -o MyAspireApp.SemanticKernelClient dotnet add MyAspireApp.SemanticKernelClient package Microsoft.SemanticKernel dotnet add MyAspireApp.SemanticKernelClient package Microsoft.Extensions.Hosting dotnet add MyAspireApp.SemanticKernelClient package Microsoft.Extensions.ServiceDiscovery dotnet add MyAspireApp.SemanticKernelClient package Microsoft.Extensions.Http ``` **4. Add the projects to the solution** ```bash dotnet sln add ./MyAspireApp.McpServer/MyAspireApp.McpServer.csproj dotnet sln add ./MyAspireApp.SemanticKernelClient/MyAspireApp.SemanticKernelClient.csproj ``` **5. Reference the projects in the AppHost** ```bash dotnet add ./MyAspireApp.AppHost/MyAspireApp.AppHost.csproj reference ./MyAspireApp.McpServer/MyAspireApp.McpServer.csproj dotnet add ./MyAspireApp.AppHost/MyAspireApp.AppHost.csproj reference ./MyAspireApp.SemanticKernelClient/MyAspireApp.SemanticKernelClient.csproj ``` **6. MCP Server Code (MyAspireApp.McpServer/Worker.cs)** ```csharp using System.Net; using System.Net.Sockets; using System.Text; using Microsoft.Extensions.Hosting; using Microsoft.Extensions.Logging; namespace MyAspireApp.McpServer; public class Worker : BackgroundService { private readonly ILogger<Worker> _logger; private readonly int _port = 12345; // Choose a port private TcpListener? _listener; public Worker(ILogger<Worker> logger) { _logger = logger; } public override async Task StartAsync(CancellationToken cancellationToken) { _listener = new TcpListener(IPAddress.Any, _port); _listener.Start(); _logger.LogInformation("MCP Server started on port {Port}", _port); await base.StartAsync(cancellationToken); } public override async Task StopAsync(CancellationToken cancellationToken) { _listener?.Stop(); _logger.LogInformation("MCP Server stopped."); await base.StopAsync(cancellationToken); } protected override async Task ExecuteAsync(CancellationToken stoppingToken) { if (_listener is null) { return; } try { while (!stoppingToken.IsCancellationRequested) { TcpClient client = await _listener.AcceptTcpClientAsync(stoppingToken); _ = HandleClientAsync(client, stoppingToken); // Fire and forget } } catch (OperationCanceledException) { // Expected when the service is stopping. } catch (Exception ex) { _logger.LogError(ex, "Error in MCP server loop."); } } private async Task HandleClientAsync(TcpClient client, CancellationToken cancellationToken) { try { _logger.LogInformation("Client connected: {RemoteEndPoint}", client.Client.RemoteEndPoint); NetworkStream stream = client.GetStream(); byte[] buffer = new byte[1024]; int bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length, cancellationToken); string message = Encoding.UTF8.GetString(buffer, 0, bytesRead); _logger.LogInformation("Received message: {Message}", message); // **Simple Message Processing** string response = ProcessMessage(message); byte[] responseBytes = Encoding.UTF8.GetBytes(response); await stream.WriteAsync(responseBytes, 0, responseBytes.Length, cancellationToken); _logger.LogInformation("Sent response: {Response}", response); } catch (Exception ex) { _logger.LogError(ex, "Error handling client."); } finally { client.Close(); _logger.LogInformation("Client disconnected: {RemoteEndPoint}", client.Client.RemoteEndPoint); } } private string ProcessMessage(string message) { // **Very Basic Example:** If the message starts with "SUM", return the sum of two numbers. if (message.StartsWith("SUM")) { try { string[] parts = message.Split(' '); if (parts.Length == 3 && int.TryParse(parts[1], out int a) && int.TryParse(parts[2], out int b)) { return $"RESULT {a + b}"; } else { return "ERROR: Invalid SUM format. Use SUM <number1> <number2>"; } } catch (Exception) { return "ERROR: Could not process SUM command."; } } else { return $"ECHO: {message}"; // Just echo the message back. } } } ``` **7. Semantic Kernel Client Code (MyAspireApp.SemanticKernelClient/Program.cs)** ```csharp using Microsoft.Extensions.DependencyInjection; using Microsoft.Extensions.Hosting; using Microsoft.SemanticKernel; using Microsoft.Extensions.Logging; using Microsoft.Extensions.Configuration; using System.Net.Sockets; using System.Text; public class Program { public static async Task Main(string[] args) { using IHost host = Host.CreateDefaultBuilder(args) .ConfigureServices((context, services) => { services.AddHostedService<Worker>(); services.AddHttpClient("McpServer", client => { var mcpServerUri = context.Configuration["McpServerUri"] ?? "http://localhost:12345"; client.BaseAddress = new Uri(mcpServerUri); }); }) .Build(); await host.RunAsync(); } public class Worker : BackgroundService { private readonly ILogger<Worker> _logger; private readonly IHttpClientFactory _httpClientFactory; private readonly IConfiguration _configuration; public Worker(ILogger<Worker> logger, IHttpClientFactory httpClientFactory, IConfiguration configuration) { _logger = logger; _httpClientFactory = httpClientFactory; _configuration = configuration; } protected override async Task ExecuteAsync(CancellationToken stoppingToken) { try { // **Semantic Kernel Setup** Kernel kernel = Kernel.CreateBuilder() .Build(); // **Define a simple function (skill)** var mcpSkill = kernel.CreateFunctionFromMethod( (string input) => SendMcpMessageAsync(input, stoppingToken).GetAwaiter().GetResult(), // Synchronously get the result "SendMcpMessage", "Sends a message to the MCP server and returns the response." ); // Import the skill into the kernel kernel.ImportSkill(new { SendMcpMessage = mcpSkill }, "McpSkill"); // **Run a Semantic Kernel "plan"** var result = await kernel.RunAsync( "SUM 10 20", // Input to the plan (MCP message) kernel.Skills.GetFunction("McpSkill", "SendMcpMessage") ); _logger.LogInformation("Semantic Kernel Result: {Result}", result.GetValue<string>()); } catch (Exception ex) { _logger.LogError(ex, "Error in Semantic Kernel client."); } // Keep the service running while (!stoppingToken.IsCancellationRequested) { await Task.Delay(1000, stoppingToken); } } private async Task<string> SendMcpMessageAsync(string message, CancellationToken cancellationToken) { string hostName = _configuration["McpServerHostName"] ?? "localhost"; int port = int.Parse(_configuration["McpServerPort"] ?? "12345"); try { using TcpClient client = new TcpClient(); await client.ConnectAsync(hostName, port, cancellationToken); NetworkStream stream = client.GetStream(); byte[] messageBytes = Encoding.UTF8.GetBytes(message); await stream.WriteAsync(messageBytes, 0, messageBytes.Length, cancellationToken); byte[] buffer = new byte[1024]; int bytesRead = await stream.ReadAsync(buffer, 0, buffer.Length, cancellationToken); string response = Encoding.UTF8.GetString(buffer, 0, bytesRead); _logger.LogInformation("Received from MCP server: {Response}", response); return response; } catch (Exception ex) { _logger.LogError(ex, "Error sending MCP message: {Error}", ex.Message); return $"ERROR: Could not connect to MCP server: {ex.Message}"; } } } } ``` **8. Aspire AppHost Code (MyAspireApp.AppHost/Program.cs)** ```csharp var builder = DistributedApplication.CreateBuilder(args); var mcpServer = builder.AddProject<Projects.MyAspireApp_McpServer>("mcpserver"); builder.AddProject<Projects.MyAspireApp_SemanticKernelClient>("semantickernelclient") .WithReference(mcpServer, "McpServerHostName", "McpServerPort"); builder.Build().Run(); ``` **9. Aspire AppHost Code (MyAspireApp.AppHost/appsettings.json)** ```json { "McpServerHostName": "mcpserver", "McpServerPort": "12345" } ``` **Explanation and Key Points** * **MCP Server:** * The `TcpListener` listens for incoming connections. * `HandleClientAsync` processes each client connection in a separate task. * `ProcessMessage` is where you'd implement your MCP logic. This example has a very basic `SUM` command and an echo. * **Semantic Kernel Client:** * The `SendMcpMessageAsync` function establishes a TCP connection to the server, sends the message, and receives the response. * The Semantic Kernel is set up with a simple skill that calls `SendMcpMessageAsync`. * A "plan" is executed to send the `SUM` message and log the result. * **Aspire Integration:** * The `AppHost` project orchestrates the deployment of both the MCP server and the Semantic Kernel client. * It uses service discovery to allow the Semantic Kernel client to find the MCP server's address. * **Error Handling:** Includes basic `try-catch` blocks for error handling. In a real application, you'd want more robust error handling and logging. * **Simplicity:** This is a deliberately simplified example. A real MCP server would likely have a more complex message format, error handling, and security considerations. **How to Run** 1. Make sure you have the .NET 8 SDK and Aspire workload installed. 2. Navigate to the `MyAspireApp` directory in your terminal. 3. Run `dotnet run --project MyAspireApp.AppHost`. **Important Considerations** * **MCP Protocol:** This example uses a very basic text-based protocol. For real-world applications, you'd likely want a more structured protocol (e.g., binary, JSON, Protocol Buffers). * **Security:** This example has no security. In a production environment, you'd need to implement authentication, authorization, and encryption. * **Scalability:** For high-volume scenarios, you might need to consider asynchronous I/O, connection pooling, and other techniques to improve scalability. * **Service Discovery:** Aspire provides a service discovery mechanism that allows the client to locate the server without hardcoding the address. **To Adapt and Extend** * **Message Format:** Change the `ProcessMessage` method to handle different MCP commands and data formats. * **Semantic Kernel Integration:** Create more complex Semantic Kernel skills that use the MCP server to perform various tasks. * **Error Handling:** Add more detailed error handling and logging. * **Configuration:** Use configuration files to manage settings like the port number and server address. Let me know if you'd like help with any of these specific areas!
mcp-server-newbie