Discover Awesome MCP Servers
Extend your agent with 16,031 capabilities via MCP servers.
- All16,031
- Developer Tools3,867
- Search1,714
- Research & Data1,557
- AI Integration Systems229
- Cloud Platforms219
- Data & App Analysis181
- Database Interaction177
- Remote Shell Execution165
- Browser Automation147
- Databases145
- Communication137
- AI Content Generation127
- OS Automation120
- Programming Docs Access109
- Content Fetching108
- Note Taking97
- File Systems96
- Version Control93
- Finance91
- Knowledge & Memory90
- Monitoring79
- Security71
- Image & Video Processing69
- Digital Note Management66
- AI Memory Systems62
- Advanced AI Reasoning59
- Git Management Tools58
- Cloud Storage51
- Entertainment & Media43
- Virtualization42
- Location Services35
- Web Automation & Stealth32
- Media Content Processing32
- Calendar Management26
- Ecommerce & Retail18
- Speech Processing18
- Customer Data Platforms16
- Travel & Transportation14
- Education & Learning Tools13
- Home Automation & IoT13
- Web Search Integration12
- Health & Wellness10
- Customer Support10
- Marketing9
- Games & Gamification8
- Google Cloud Integrations7
- Art & Culture4
- Language Translation3
- Legal & Compliance2
Mcp_trial
Testando o servidor MCP e está funcionando.
MCP Server for Awesome-llms-txt
Okay, I understand. You want me to create an MCP (presumably referring to a "Minimal, Complete, and Verifiable" example) server setup for the `SecretiveShell/Awesome-llms-txt` project, and to document the process directly within this conversation, using MCP resources. This is a bit abstract, as I don't have direct access to your file system or the `SecretiveShell/Awesome-llms-txt` project. Therefore, I'll provide a *conceptual* MCP, focusing on the core elements and assuming a basic understanding of Python and server setup. You'll need to adapt this to your specific environment and project structure. **Conceptual MCP: A Simple API Server for Serving Text from `Awesome-llms-txt`** This MCP will focus on: 1. **Loading Text Data:** How to load text data from a file (assuming `Awesome-llms-txt` contains text files). 2. **A Minimal API Endpoint:** A single API endpoint that returns the content of a specific text file. 3. **Basic Server Setup (using Flask):** A simple Flask server to host the API. 4. **Documentation within the Code:** Docstrings and comments to explain the code. **Code (Python with Flask):** ```python from flask import Flask, jsonify, abort import os app = Flask(__name__) # --- Configuration --- TEXT_DIRECTORY = "path/to/your/Awesome-llms-txt/text_files" # Replace with the actual path ALLOWED_EXTENSIONS = ['.txt'] # --- Helper Functions --- def is_valid_file(filename): """ Checks if a filename is valid based on allowed extensions. Args: filename (str): The name of the file. Returns: bool: True if the file is valid, False otherwise. """ return any(filename.endswith(ext) for ext in ALLOWED_EXTENSIONS) def load_text_file(filename): """ Loads the content of a text file. Args: filename (str): The name of the file to load. Returns: str: The content of the file, or None if the file doesn't exist or is invalid. """ filepath = os.path.join(TEXT_DIRECTORY, filename) if not os.path.exists(filepath) or not is_valid_file(filename): return None try: with open(filepath, 'r', encoding='utf-8') as f: return f.read() except Exception as e: print(f"Error reading file: {e}") # Log the error return None # --- API Endpoints --- @app.route('/text/<filename>', methods=['GET']) def get_text(filename): """ API endpoint to retrieve the content of a text file. Args: filename (str): The name of the text file to retrieve. Returns: JSON: A JSON response containing the text content, or an error message. """ text_content = load_text_file(filename) if text_content is None: abort(404, description="File not found or invalid.") # Return a 404 error return jsonify({'filename': filename, 'content': text_content}) # --- Error Handling --- @app.errorhandler(404) def resource_not_found(e): """ Custom error handler for 404 errors. """ return jsonify(error=str(e)), 404 # --- Main Execution --- if __name__ == '__main__': app.run(debug=True) # Enable debug mode for development ``` **Explanation and Documentation (MCP Resources):** * **`TEXT_DIRECTORY`:** This variable *must* be updated to point to the actual directory where your text files from `Awesome-llms-txt` are located. This is crucial. * **`ALLOWED_EXTENSIONS`:** This list defines the file extensions that are considered valid. Adjust this if your files have different extensions. * **`is_valid_file(filename)`:** This function checks if a given filename is allowed based on its extension. This is a basic security measure to prevent arbitrary file access. * **`load_text_file(filename)`:** This function attempts to load the content of a text file. It handles file existence checks, extension validation, and potential file reading errors. The `encoding='utf-8'` is important for handling various character sets. Error handling is included to log potential issues. * **`@app.route('/text/<filename>', methods=['GET'])`:** This defines the API endpoint. The `<filename>` part is a variable that will be passed to the `get_text` function. The `methods=['GET']` specifies that this endpoint only accepts GET requests. * **`get_text(filename)`:** This function is the handler for the API endpoint. It calls `load_text_file` to retrieve the content of the specified file. If the file is not found or invalid, it returns a 404 error. Otherwise, it returns a JSON response containing the filename and the text content. * **`@app.errorhandler(404)`:** This defines a custom error handler for 404 errors. It returns a JSON response with an error message, which is generally better than the default HTML error page. * **`app.run(debug=True)`:** This starts the Flask development server. `debug=True` enables debug mode, which provides more detailed error messages and automatically reloads the server when you make changes to the code. **Do not use `debug=True` in a production environment.** **How to Run:** 1. **Install Flask:** `pip install Flask` 2. **Save the code:** Save the code above as a Python file (e.g., `api_server.py`). 3. **Update `TEXT_DIRECTORY`:** Modify the `TEXT_DIRECTORY` variable to point to the correct location of your text files. 4. **Run the server:** `python api_server.py` **Testing the API:** Once the server is running, you can test the API by opening a web browser or using a tool like `curl` and navigating to: `http://127.0.0.1:5000/text/your_file.txt` Replace `your_file.txt` with the actual name of a text file in your `TEXT_DIRECTORY`. **Example using `curl`:** ```bash curl http://127.0.0.1:5000/text/example.txt ``` **JSON Response (Success):** ```json { "filename": "example.txt", "content": "This is the content of example.txt." } ``` **JSON Response (Error - File Not Found):** ```json { "error": "404: File not found or invalid." } ``` **Important Considerations (Beyond the MCP):** * **Security:** This is a *very* basic example and is not secure for production use. You'll need to implement proper authentication, authorization, and input validation. * **Error Handling:** The error handling is minimal. You should add more robust error logging and reporting. * **Scalability:** Flask's built-in development server is not suitable for production. You'll need to use a production-ready WSGI server like Gunicorn or uWSGI. * **Configuration:** Hardcoding the `TEXT_DIRECTORY` is not ideal. You should use environment variables or a configuration file. * **Data Validation:** You might want to add more sophisticated data validation to ensure that the text files are in the expected format. * **Rate Limiting:** Implement rate limiting to prevent abuse. * **CORS:** If your frontend is hosted on a different domain, you'll need to configure CORS (Cross-Origin Resource Sharing). **MCP Principles Applied:** * **Minimal:** The code is as short and simple as possible while still demonstrating the core functionality. * **Complete:** The code includes all the necessary parts to run a basic API server. * **Verifiable:** You can copy and paste the code, install Flask, update the `TEXT_DIRECTORY`, and run the server to verify that it works. This MCP provides a starting point for building a more complex API server for your `Awesome-llms-txt` project. Remember to adapt it to your specific needs and to address the security and scalability considerations mentioned above. Let me know if you have any specific questions about any of these aspects.
Weather & Prayer Times MCP Server
Enables users to get weather information and Islamic prayer (Namaz) times, along with motivational prompts and random quotes. Integrates with OpenWeatherMap and Aladhan APIs to provide location-based weather data and prayer schedules.
MCP-BOS
Um framework de servidor modular e extensível do Protocolo de Contexto de Modelo, projetado para o Claude Desktop, que utiliza a descoberta automática de módulos baseada em convenções para estender facilmente a funcionalidade de aplicações de IA sem modificar o código principal.
RocketReach MCP Server
A Model Context Protocol server that connects to RocketReach API, enabling AI assistants to find professional/personal emails, phone numbers, and enrich company data.
Bitbucket MCP
A Model Context Protocol server that enables AI assistants to interact with Bitbucket repositories, pull requests, and other resources through Bitbucket Cloud and Server APIs.
Magic Component Platform
Ferramenta baseada em IA que ajuda desenvolvedores a criar componentes de UI bonitos instantaneamente através de descrições em linguagem natural, integrando-se com IDEs populares como Cursor, Windsurf e VSCode.
mcp-talib
Um servidor de Protocolo de Contexto de Modelo (MCP) que fornece as funções do ta-lib-python.
Doxygen MCP Server
A comprehensive server that enables AI assistants to generate, configure, and manage Doxygen documentation for various programming languages through a clean interface.
🚀 OpenCV MCP Server
O Servidor MCP do OpenCV fornece os recursos de processamento de imagem e vídeo do OpenCV através do Protocolo de Contexto de Modelo (MCP). Acesse ferramentas poderosas de visão computacional para tarefas que variam desde a manipulação básica de imagens até a detecção e rastreamento avançados de objetos.
Matrix Pattern MCP Server
Enables advanced pattern management and synchronization for development workflows using a two-dimensional matrix structure. Organizes patterns by development phases and feature domains with intelligent horizontal/vertical synchronization capabilities.
Weather MCP Server
Enables users to get real-time weather alerts for US states and echo messages through both MCP server tools and a modern web interface. Provides weather information access with multiple deployment options for different use cases.
ContainerGuard MCP
Enables remote container security monitoring and management through Docker API and SSH connections. Provides real-time container monitoring, security analysis, event tracking, and comprehensive security scanning for containerized environments.
Apify MCP Server
Connects AI assistants to thousands of Apify Actors for web scraping, data extraction, and automation tasks, with dynamic tool discovery to find and use any Actor from the Apify Store in real time.
Anki MCP Server
Server that enables programmatic interaction with Anki through the Model Context Protocol, allowing users to manage flashcards, decks, and review processes.
Prefect MCP Server
Um servidor de Protocolo de Contexto de Modelo que permite que assistentes de IA interajam com a plataforma de automação de fluxo de trabalho da Prefect por meio de linguagem natural, permitindo que os usuários gerenciem fluxos, implantações, tarefas e outros recursos da Prefect por meio de comandos conversacionais.
Gmail MCP Server
A Model Context Protocol server that enables applications to interact with Gmail through a clean API, supporting email searching, sending, reading, and label management.
Zerops Documentation MCP Server
Um servidor provedor de contexto gerenciado que rastreia e indexa a documentação do Zerops, tornando-a disponível como uma fonte de contexto pesquisável para o Cursor IDE.
Pwno MCP
Enables stateful binary analysis and pwn research through GDB/pwndbg debugging capabilities. Supports loading binaries, setting breakpoints, memory analysis, compilation with sanitizers, and process management for vulnerability research.
google-sheets-mcp
Your AI Assistant's Gateway to Google Sheets! 25 powerful tools for seamless Google Sheets automation via MCP
Deep Thinking Assistant
Um servidor MCP baseado na API da OpenAI que oferece capacidades de análise e pensamento profundo, integrando-se com modelos de edição de IA para fornecer insights abrangentes e soluções práticas.
Mattermost MCP Server
A Model Context Protocol server that enables Claude to interact with Mattermost instances, supporting post management, channel operations, user management, and reaction management.
AgentKit Browser Automation
agentkit para o servidor playwright-mcp
Mem0 MCP Server
A Model Context Protocol server that integrates AI assistants with Mem0.ai's persistent memory system, allowing models to store, retrieve, search, and manage different types of memories.
dv-flow-mcp
Servidor de Protocolo de Contexto do Modelo (MCP) para DV Flow
Remote MCP Server on Cloudflare
Robot Framework MCP Server
A Model Context Protocol server that enables generating and managing Robot Framework test automation with SeleniumLibrary, including test case generation, page object models, and advanced web testing capabilities.
task-orchestrator-mcp
An MCP server for task orchestration.
Unreal Engine MCP Bridge
A server that enables control of Unreal Engine 5.5+ using natural language commands, allowing users to create Blueprints, manipulate actors, work with nodes, manage project settings, and create UMG widgets through the Model Context Protocol.
Redis Cloud API MCP Server
O Servidor MCP da API Redis Cloud fornece um Servidor MCP para a API Redis Cloud, permitindo que você gerencie seus recursos do Redis Cloud usando linguagem natural.