Discover Awesome MCP Servers

Extend your agent with 17,206 capabilities via MCP servers.

All17,206
MCP Docs RAG Server

MCP Docs RAG Server

Sebuah server MCP TypeScript yang memungkinkan kueri dokumen menggunakan LLM dengan konteks dari repositori dan berkas teks yang disimpan secara lokal melalui sistem RAG (Retrieval-Augmented Generation).

Overleaf MCP Server

Overleaf MCP Server

Enables access to Overleaf LaTeX projects through Git integration, allowing users to read files, analyze document structure, extract sections, and manage multiple projects through natural language commands.

Microservice Control Panel (MCP)

Microservice Control Panel (MCP)

A modular system for building and orchestrating AI applications through microservices, featuring LLM interactions, Jupyter notebook execution, and visual workflow capabilities.

JSON-RPC クライアントツール

JSON-RPC クライアントツール

Ini hanyalah proyek pribadi, untuk referensi Anda.

MCP Minecraft Remote

MCP Minecraft Remote

Memungkinkan asisten AI untuk terhubung dan mengendalikan pemain Minecraft di server jarak jauh, memungkinkan navigasi, pembangunan, penambangan, manajemen inventaris, interaksi entitas, dan komunikasi obrolan melalui perintah bahasa alami.

MCP Server Demo 项目文档

MCP Server Demo 项目文档

Berikut adalah terjemahan dari teks tersebut ke dalam bahasa Indonesia: **Contoh proyek layanan MCP (Model Control Protocol) berbasis Spring Boot**

Twilio MCP Server

Twilio MCP Server

Enables AI assistants to interact with all Twilio APIs through the Model Context Protocol. Supports SMS, voice, messaging, and other Twilio services with secure authentication and configurable API filtering.

MCP Web Search Server

MCP Web Search Server

Enables privacy-focused web searches, social media lookups, and web archive retrieval across multiple engines including DuckDuckGo, Brave, Reddit, YouTube, and Wayback Machine with built-in caching and security features.

InfluxDB MCP Server

InfluxDB MCP Server

Server Protokol Konteks Model yang menyediakan Claude akses ke instance basis data deret waktu InfluxDB, memungkinkan penulisan data, kueri, dan pengelolaan organisasi dan bucket melalui bahasa alami.

SQLite Database Demo

SQLite Database Demo

Tentu, berikut beberapa contoh untuk membangun server, klien, dan pengujian dalam konteks protokol model. Saya akan memberikan contoh-contoh ini dalam bahasa Inggris, lalu menerjemahkannya ke dalam bahasa Indonesia. **English Examples (with explanations):** Let's assume we have a simple model context protocol (MCP) for a calculator service. This MCP defines how a client requests calculations and how the server responds. **1. Defining the MCP (Conceptual):** * **Request:** * `operation`: String (e.g., "add", "subtract", "multiply", "divide") * `operand1`: Number * `operand2`: Number * **Response:** * `result`: Number * `status`: String (e.g., "success", "error") * `error_message`: String (optional, only present if `status` is "error") **2. Server Implementation (Conceptual - using Python as an example):** ```python import json def handle_request(request_data): try: request = json.loads(request_data) operation = request['operation'] operand1 = request['operand1'] operand2 = request['operand2'] if operation == 'add': result = operand1 + operand2 elif operation == 'subtract': result = operand1 - operand2 elif operation == 'multiply': result = operand1 * operand2 elif operation == 'divide': if operand2 == 0: return json.dumps({'status': 'error', 'error_message': 'Division by zero'}) result = operand1 / operand2 else: return json.dumps({'status': 'error', 'error_message': 'Invalid operation'}) return json.dumps({'status': 'success', 'result': result}) except (KeyError, TypeError) as e: return json.dumps({'status': 'error', 'error_message': str(e)}) # Example usage (simulating receiving a request): request_data = '{"operation": "add", "operand1": 5, "operand2": 3}' response = handle_request(request_data) print(response) # Output: {"status": "success", "result": 8} request_data = '{"operation": "divide", "operand1": 10, "operand2": 0}' response = handle_request(request_data) print(response) # Output: {"status": "error", "error_message": "Division by zero"} ``` **3. Client Implementation (Conceptual - using Python as an example):** ```python import socket import json def send_request(operation, operand1, operand2, server_address=('localhost', 12345)): # Replace with your server address try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(server_address) request = json.dumps({'operation': operation, 'operand1': operand1, 'operand2': operand2}) sock.sendall(request.encode('utf-8')) response_data = sock.recv(1024).decode('utf-8') response = json.loads(response_data) return response except Exception as e: return {'status': 'error', 'error_message': str(e)} finally: sock.close() # Example usage: result = send_request('multiply', 4, 6) print(result) result = send_request('divide', 10, 2) print(result) result = send_request('divide', 10, 0) print(result) ``` **4. Testing (Conceptual - using Python's `unittest`):** ```python import unittest import json from your_server_module import handle_request # Replace with your actual server module class TestCalculatorService(unittest.TestCase): def test_addition(self): request_data = '{"operation": "add", "operand1": 5, "operand2": 3}' response = json.loads(handle_request(request_data)) self.assertEqual(response['status'], 'success') self.assertEqual(response['result'], 8) def test_division_by_zero(self): request_data = '{"operation": "divide", "operand1": 10, "operand2": 0}' response = json.loads(handle_request(request_data)) self.assertEqual(response['status'], 'error') self.assertEqual(response['error_message'], 'Division by zero') def test_invalid_operation(self): request_data = '{"operation": "power", "operand1": 2, "operand2": 3}' response = json.loads(handle_request(request_data)) self.assertEqual(response['status'], 'error') self.assertEqual(response['error_message'], 'Invalid operation') if __name__ == '__main__': unittest.main() ``` **Explanation of the Concepts:** * **Model Context Protocol (MCP):** This defines the structure of the messages exchanged between the client and the server. It specifies the fields, data types, and meaning of each part of the message. In our example, we're using JSON to represent the MCP. * **Server:** The server listens for requests from clients, processes them according to the MCP, and sends back a response. * **Client:** The client sends requests to the server according to the MCP and receives responses. * **Testing:** Testing ensures that the server and client correctly implement the MCP and handle different scenarios, including errors. Unit tests are used to test individual components (like the `handle_request` function). **Indonesian Translation:** Mari kita asumsikan kita memiliki protokol konteks model (MCP) sederhana untuk layanan kalkulator. MCP ini mendefinisikan bagaimana klien meminta perhitungan dan bagaimana server merespons. **1. Mendefinisikan MCP (Konseptual):** * **Permintaan:** * `operation`: String (misalnya, "add", "subtract", "multiply", "divide") * `operand1`: Angka * `operand2`: Angka * **Respons:** * `result`: Angka * `status`: String (misalnya, "success", "error") * `error_message`: String (opsional, hanya ada jika `status` adalah "error") **2. Implementasi Server (Konseptual - menggunakan Python sebagai contoh):** ```python import json def handle_request(request_data): try: request = json.loads(request_data) operation = request['operation'] operand1 = request['operand1'] operand2 = request['operand2'] if operation == 'add': result = operand1 + operand2 elif operation == 'subtract': result = operand1 - operand2 elif operation == 'multiply': result = operand1 * operand2 elif operation == 'divide': if operand2 == 0: return json.dumps({'status': 'error', 'error_message': 'Pembagian dengan nol'}) result = operand1 / operand2 else: return json.dumps({'status': 'error', 'error_message': 'Operasi tidak valid'}) return json.dumps({'status': 'success', 'result': result}) except (KeyError, TypeError) as e: return json.dumps({'status': 'error', 'error_message': str(e)}) # Contoh penggunaan (mensimulasikan menerima permintaan): request_data = '{"operation": "add", "operand1": 5, "operand2": 3}' response = handle_request(request_data) print(response) # Output: {"status": "success", "result": 8} request_data = '{"operation": "divide", "operand1": 10, "operand2": 0}' response = handle_request(request_data) print(response) # Output: {"status": "error", "error_message": "Pembagian dengan nol"} ``` **3. Implementasi Klien (Konseptual - menggunakan Python sebagai contoh):** ```python import socket import json def send_request(operation, operand1, operand2, server_address=('localhost', 12345)): # Ganti dengan alamat server Anda try: sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(server_address) request = json.dumps({'operation': operation, 'operand1': operand1, 'operand2': operand2}) sock.sendall(request.encode('utf-8')) response_data = sock.recv(1024).decode('utf-8') response = json.loads(response_data) return response except Exception as e: return {'status': 'error', 'error_message': str(e)} finally: sock.close() # Contoh penggunaan: result = send_request('multiply', 4, 6) print(result) result = send_request('divide', 10, 2) print(result) result = send_request('divide', 10, 0) print(result) ``` **4. Pengujian (Konseptual - menggunakan `unittest` Python):** ```python import unittest import json from your_server_module import handle_request # Ganti dengan modul server Anda yang sebenarnya class TestCalculatorService(unittest.TestCase): def test_addition(self): request_data = '{"operation": "add", "operand1": 5, "operand2": 3}' response = json.loads(handle_request(request_data)) self.assertEqual(response['status'], 'success') self.assertEqual(response['result'], 8) def test_division_by_zero(self): request_data = '{"operation": "divide", "operand1": 10, "operand2": 0}' response = json.loads(handle_request(request_data)) self.assertEqual(response['status'], 'error') self.assertEqual(response['error_message'], 'Pembagian dengan nol') def test_invalid_operation(self): request_data = '{"operation": "power", "operand1": 2, "operand2": 3}' response = json.loads(handle_request(request_data)) self.assertEqual(response['status'], 'error') self.assertEqual(response['error_message'], 'Operasi tidak valid') if __name__ == '__main__': unittest.main() ``` **Penjelasan Konsep:** * **Protokol Konteks Model (MCP):** Ini mendefinisikan struktur pesan yang dipertukarkan antara klien dan server. Ini menentukan bidang, tipe data, dan arti dari setiap bagian pesan. Dalam contoh kita, kita menggunakan JSON untuk merepresentasikan MCP. * **Server:** Server mendengarkan permintaan dari klien, memprosesnya sesuai dengan MCP, dan mengirimkan respons kembali. * **Klien:** Klien mengirimkan permintaan ke server sesuai dengan MCP dan menerima respons. * **Pengujian:** Pengujian memastikan bahwa server dan klien mengimplementasikan MCP dengan benar dan menangani berbagai skenario, termasuk kesalahan. Unit test digunakan untuk menguji komponen individual (seperti fungsi `handle_request`). **Important Notes:** * **Error Handling:** Robust error handling is crucial in real-world applications. The examples above provide basic error handling, but you should add more comprehensive checks and logging. * **Serialization:** JSON is used here for simplicity. Other serialization formats like Protocol Buffers or Apache Thrift can be more efficient for complex data structures. * **Networking:** The client example uses basic sockets. For more complex applications, consider using a framework like Flask (for the server) or a library like `requests` (for the client) to handle networking details. * **Security:** These examples do not include any security measures. In a production environment, you'll need to implement authentication, authorization, and encryption. * **Concurrency:** The server example is single-threaded. For handling multiple clients concurrently, you'll need to use threading, asynchronous programming, or a process-based approach. These examples provide a starting point. You'll need to adapt them to your specific model context and requirements. Let me know if you have any more questions.

PocketBase MCP Server

PocketBase MCP Server

Server MCP yang memungkinkan interaksi dengan database PocketBase, memungkinkan operasi rekaman (ambil, daftar, buat, perbarui), manajemen berkas, dan migrasi skema melalui bahasa alami.

Nostr MCP Server

Nostr MCP Server

Cermin dari

MCP Multi-Context Hook Generator

MCP Multi-Context Hook Generator

Automatically generates typed React hooks for Next.js projects by crawling API routes, GraphQL queries, and components. Analyzes pages to suggest optimal render modes (SSR/CSR/ISR) and produces comprehensive documentation with AI-powered guidance.

CoolPC MCP Server

CoolPC MCP Server

A Model Context Protocol server that enables Claude Desktop to query and analyze Taiwan CoolPC computer component prices, helping users generate custom PC quotes through AI assistance.

MCP Server for Apache Gravitino

MCP Server for Apache Gravitino

A FastMCP integration server that provides access to Apache Gravitino metadata management APIs, allowing users to manage catalog/schema/table metadata, tags, and user-role information through a structured interface.

Google Calendar MCP Server

Google Calendar MCP Server

Enables language models to interact with Google Calendar through OAuth2 authentication, allowing creation, retrieval, listing, updating, and deletion of calendar events.

Basic MCP Server

Basic MCP Server

A basic TypeScript implementation of the Model Context Protocol (MCP) server designed as a starting point for MCP development. Provides a minimal foundation for building custom MCP servers with stdio configuration for local integration with VS Code and GitHub Copilot.

espresso-mcp

espresso-mcp

espresso-mcp

mcp-server-test

mcp-server-test

"MCP function learning" diterjemahkan menjadi **"Pembelajaran fungsi MCP"** dalam bahasa Indonesia.

Kagi Search

Kagi Search

Mengizinkan penggunaan API Kagi untuk pencarian web dan pengayaan konten melalui metode seperti fastgpt, enrich/web, dan enrich/news.

Wizlights MCP Server

Wizlights MCP Server

Server Model Context Protocol (MCP) untuk memungkinkan LLM mengontrol perangkat WiZ.

🎓 Canvas LMS MCP Server 🎓

🎓 Canvas LMS MCP Server 🎓

Server MCP untuk mengakses Canvas LMS bagi siswa.

Text Editor MCP Server

Text Editor MCP Server

Implementasi sumber terbuka dari alat editor teks bawaan Claude versi: text\_editor\_20241022 (Claude 3.5 Sonnet) text\_editor\_20250124 (Claude 3.7 Sonnet)

MCP Memory

MCP Memory

Enables MCP clients to remember user information, preferences, and behaviors across conversations using vector search technology. Built on Cloudflare infrastructure with persistent storage and semantic similarity matching.

MCP Memory

MCP Memory

An MCP server implementing memory solutions for data-rich applications using HippoRAG for efficient knowledge graph capabilities, enabling search across multiple sources including uploaded files.

Remote MCP Server Authless

Remote MCP Server Authless

A serverless MCP implementation on Cloudflare Workers that doesn't require authentication, allowing you to deploy custom AI tools that can be accessed from Cloudflare AI Playground or Claude Desktop.

Canny MCP Server

Canny MCP Server

Enables interaction with Canny.io customer feedback platform through natural language. Supports board management, post creation/updating, search functionality, and comprehensive feedback management operations.

IntelliGlow

IntelliGlow

A Model Context Protocol (MCP) server that allows AI assistants like Claude to control real smart bulbs via UDP network communication, featuring voice commands, AI reasoning, and direct hardware control.

Serper Google Search Server

Serper Google Search Server

Mengaktifkan integrasi fungsionalitas pencarian Google ke dalam aplikasi yang mendukung MCP (MCP-enabled) menggunakan Serper API, menyediakan hasil pencarian yang kaya, parameter yang dapat dikonfigurasi, dan penanganan respons yang efisien.

FullScope-MCP

FullScope-MCP

A comprehensive Model Context Protocol server for content summarization that supports web scraping, file reading, content summarization, and topic-based summarization features.