Discover Awesome MCP Servers

Extend your agent with 17,789 capabilities via MCP servers.

All17,789
mcp-md-vector-search

mcp-md-vector-search

Una implementación ligera de servidor MCP que utiliza PGLite y pgvector para realizar búsquedas de similitud eficientes en documentos Markdown locales utilizando el Protocolo de Contexto de Modelo (MCP).

Date MCP Server

Date MCP Server

Provides AI assistants with accurate current date and day of week information through simple tools for retrieving ISO-formatted dates and day names.

Bug Bounty Hunter MCP

Bug Bounty Hunter MCP

Professional security testing server with 50+ integrated tools for web application vulnerability scanning, reconnaissance, fuzzing, and API testing. Enables comprehensive bug bounty hunting workflows including subdomain enumeration, XSS/SQLi detection, and automated security assessments.

MCP File System Server

MCP File System Server

A simple Model Context Protocol server that enables AI assistants to interact with local file systems, allowing them to read, write, update, and delete files within a specified project directory.

Bullhorn CRM MCP Server by CData

Bullhorn CRM MCP Server by CData

This read-only MCP Server allows you to connect to Bullhorn CRM data from Claude Desktop through CData JDBC Drivers. Free (beta) read/write servers available at https://www.cdata.com/solutions/mcp

MCP SERVER

MCP SERVER

Columbia MCP Server

Columbia MCP Server

Proporciona una infraestructura escalable y contenerizada para desplegar y gestionar servidores del Protocolo de Contexto de Modelos con monitorización, alta disponibilidad y configuraciones seguras.

Webots MCP Server

Webots MCP Server

Enables real-time monitoring and control of any Webots robot simulation, providing access to robot state, sensors, camera feeds, and simulation controls (pause, resume, reset) through natural language.

MCP Workflow Tracker

MCP Workflow Tracker

Provides observability for multi-agent workflows by tracking hierarchical task structure, architectural decisions, reasoning, encountered problems, code modifications with Git diffs, and temporal metrics.

GABI MCP Server

GABI MCP Server

An MCP server that exposes GABI functionality, allowing users to run queries against a target endpoint with proper authentication.

Discord MCP Server

Discord MCP Server

A secure server that enables interaction with Discord channels through JWT-authenticated API calls, allowing users to send messages, fetch channel data, search content, and perform moderation actions.

MCP Gmail Server

MCP Gmail Server

Un servidor de Protocolo de Contexto de Modelo (MCP) que proporciona acceso a Gmail para LLMs, impulsado por el SDK de Python de MCP.

开发 SSE 类型的 MCP 服务

开发 SSE 类型的 MCP 服务

Okay, here's a breakdown of how you might approach building a Claude-based demo using Server-Sent Events (SSE) with both a command-line interface (CLI) and a web client, along with a conceptual outline in Spanish: **Conceptual Outline (Spanish)** Este es un esquema conceptual para construir una demostración de Claude utilizando Eventos Enviados por el Servidor (SSE) con un cliente de línea de comandos (CLI) y un cliente web: 1. **Servidor (Backend):** * **API SSE:** Un punto final (endpoint) que genera eventos SSE. Recibe la entrada del usuario, la envía a Claude, y transmite la respuesta de Claude *en tiempo real* como eventos SSE. * **Conexión a Claude:** Utiliza la API de Claude (Anthropic API) para enviar la entrada del usuario y recibir la respuesta. Necesitarás una clave API de Anthropic. * **Manejo de Errores:** Implementa un manejo robusto de errores para problemas de conexión, errores de la API de Claude, etc. * **Tecnologías:** Python (Flask, FastAPI), Node.js (Express), Go, etc. Flask y FastAPI son populares para APIs en Python. 2. **Cliente CLI (Línea de Comandos):** * **Envío de Entrada:** Permite al usuario ingresar texto a través de la línea de comandos. * **Conexión SSE:** Se conecta al punto final SSE del servidor. * **Recepción y Visualización:** Recibe los eventos SSE y muestra la respuesta de Claude en la terminal *en tiempo real*. * **Tecnologías:** Python (requests, sseclient-py), Node.js (node-fetch, sseclient), etc. 3. **Cliente Web (Frontend):** * **Interfaz de Usuario:** Proporciona una interfaz web (HTML, CSS, JavaScript) con un área de entrada de texto y un área de visualización de la respuesta. * **Conexión SSE:** Utiliza JavaScript para conectarse al punto final SSE del servidor. * **Recepción y Visualización:** Recibe los eventos SSE y actualiza la interfaz web para mostrar la respuesta de Claude *en tiempo real*. * **Tecnologías:** HTML, CSS, JavaScript, posiblemente un framework como React, Vue, o Angular. 4. **Consideraciones Adicionales:** * **Autenticación:** Si es necesario, implementa autenticación para proteger el acceso a la API. * **Limitación de Tasa (Rate Limiting):** Implementa limitación de tasa para evitar el abuso de la API de Claude. * **Logging:** Implementa logging para rastrear el uso y diagnosticar problemas. * **Variables de Entorno:** Utiliza variables de entorno para almacenar la clave API de Claude y otras configuraciones sensibles. **Detailed Breakdown (English with Spanish Translations)** Here's a more detailed breakdown of each component: **1. Server (Backend)** * **Technology Choice:** Python with Flask or FastAPI is a good choice for its simplicity and ease of use. Node.js with Express is another popular option. * **API Endpoint (Punto Final de la API):** Create an endpoint that handles SSE. For example, `/stream`. ```python # Flask example from flask import Flask, Response, request import anthropic # Assuming you have the Anthropic Python library app = Flask(__name__) ANTHROPIC_API_KEY = "YOUR_ANTHROPIC_API_KEY" # Replace with your actual API key client = anthropic.Anthropic(api_key=ANTHROPIC_API_KEY) @app.route('/stream') def stream(): prompt = request.args.get('prompt', 'Tell me a story.') # Get prompt from request def generate(): try: with client.messages.stream( model="claude-3-opus-20240229", # Or your preferred model max_tokens=1024, messages=[{"role": "user", "content": prompt}], ) as response: for event in response.text_stream: yield f"data: {event}\n\n" # SSE format except Exception as e: yield f"data: ERROR: {str(e)}\n\n" # Send error as SSE return Response(generate(), mimetype='text/event-stream') if __name__ == '__main__': app.run(debug=True) ``` * **Explanation:** * The `/stream` route handles the SSE connection. * It retrieves the user's prompt from the request parameters (`request.args.get('prompt')`). * The `generate()` function is a generator that yields SSE data events. * It uses the Anthropic API to stream the response from Claude. * Each chunk of the response is formatted as `data: {chunk}\n\n` (the SSE format). * Error handling is included to send errors as SSE events. * The `Response` object is created with the `text/event-stream` mimetype. * **Claude API Integration (Integración de la API de Claude):** Use the Anthropic API to send the user's input and receive the response. You'll need an API key. * **Error Handling (Manejo de Errores):** Implement robust error handling for connection problems, API errors, etc. Send error messages as SSE events. **2. CLI Client (Cliente CLI)** * **Technology Choice:** Python with `requests` and `sseclient-py` is a good option. ```python import requests import sseclient def main(): prompt = input("Enter your prompt: ") url = f"http://localhost:5000/stream?prompt={prompt}" # Adjust URL if needed try: response = requests.get(url, stream=True) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) client = sseclient.SSEClient(response.raw) for event in client.events(): if event.event == 'message': # Check if the event is a message print(event.data, end="", flush=True) # Print the data without a newline else: print(f"Event: {event.event}, Data: {event.data}") # Handle other events except requests.exceptions.RequestException as e: print(f"Error connecting to the server: {e}") except Exception as e: print(f"An error occurred: {e}") if __name__ == "__main__": main() ``` * **Explanation:** * Prompts the user for input. * Constructs the URL for the SSE endpoint, including the prompt as a query parameter. * Uses `requests` to make a GET request to the SSE endpoint with `stream=True`. * Uses `sseclient` to parse the SSE stream. * Iterates through the events received from the server. * Prints the data from each event to the console. * Includes error handling for network issues and other exceptions. **3. Web Client (Cliente Web)** * **Technology Choice:** HTML, CSS, JavaScript. Consider using a framework like React, Vue, or Angular for a more structured approach. ```html <!DOCTYPE html> <html> <head> <title>Claude SSE Demo</title> </head> <body> <h1>Claude SSE Demo</h1> <input type="text" id="promptInput" placeholder="Enter your prompt"> <button onclick="startStream()">Send</button> <div id="responseArea"></div> <script> function startStream() { const prompt = document.getElementById("promptInput").value; const responseArea = document.getElementById("responseArea"); responseArea.innerHTML = ""; // Clear previous response const eventSource = new EventSource(`http://localhost:5000/stream?prompt=${prompt}`); // Adjust URL eventSource.onmessage = function(event) { responseArea.innerHTML += event.data; }; eventSource.onerror = function(error) { console.error("SSE error:", error); responseArea.innerHTML += "<p>Error: " + error + "</p>"; eventSource.close(); // Close the connection on error }; } </script> </body> </html> ``` * **Explanation:** * Basic HTML structure with an input field, a button, and a `div` to display the response. * The `startStream()` function is called when the button is clicked. * It creates an `EventSource` object to connect to the SSE endpoint. * The `onmessage` event handler appends the received data to the `responseArea`. * The `onerror` event handler logs errors and displays an error message. **Important Considerations (Consideraciones Importantes)** * **API Key Security (Seguridad de la Clave API):** Never hardcode your API key directly into your code. Use environment variables. * **Streaming vs. Single Request (Streaming vs. Solicitud Única):** SSE is ideal for streaming responses. If you don't need streaming, a regular HTTP request/response might be simpler. * **Error Handling (Manejo de Errores):** Thorough error handling is crucial for a good user experience. * **CORS (Compartir Recursos de Origen Cruzado):** If your frontend and backend are on different domains, you'll need to configure CORS on your backend. Flask has the `flask_cors` extension for this. * **Rate Limiting (Limitación de Tasa):** Be mindful of the Anthropic API's rate limits. Implement rate limiting in your backend to prevent exceeding the limits. * **Model Selection (Selección del Modelo):** Choose the appropriate Claude model for your needs (e.g., `claude-3-opus-20240229`, `claude-3-haiku-20240307`). **Next Steps (Próximos Pasos)** 1. **Get an Anthropic API Key (Obtén una Clave API de Anthropic):** Sign up for an Anthropic account and get an API key. 2. **Install Dependencies (Instala las Dependencias):** Install the necessary Python packages (e.g., `pip install flask anthropic requests sseclient-py`). 3. **Implement the Backend (Implementa el Backend):** Start with the Flask/FastAPI example and adapt it to your needs. 4. **Implement the CLI Client (Implementa el Cliente CLI):** Use the Python example as a starting point. 5. **Implement the Web Client (Implementa el Cliente Web):** Create the HTML, CSS, and JavaScript for your web interface. 6. **Test and Debug (Prueba y Depura):** Thoroughly test your application and debug any issues. This comprehensive outline should give you a solid foundation for building your Claude SSE demo. Remember to replace `"YOUR_ANTHROPIC_API_KEY"` with your actual API key. Good luck!

Canvas MCP

Canvas MCP

Enables AI agents to interact with Canvas LMS and Gradescope, allowing users to query courses, assignments, modules, calendar events, and find relevant resources using natural language.

MarineTraffic MCP Server

MarineTraffic MCP Server

Roblox Studio MCP Assistant

Roblox Studio MCP Assistant

Enables AI assistants to interact with Roblox Studio in real-time, allowing creation and manipulation of game objects through natural language commands via an HTTP-based plugin system.

Jupiter MCP Server

Jupiter MCP Server

Servidor de Protocolo de Contexto del Modelo que proporciona a Claude AI acceso a la API de intercambio de Jupiter en Solana.

Canvelete

Canvelete

Enables programmatic design creation and manipulation on the Canvelete platform through AI assistants. Supports design management, canvas element manipulation, template application, asset management, and real-time synchronization with the design editor.

MCPServer

MCPServer

Un servidor MCP sencillo para habilitar flujos de trabajo agenticos.

Mcp Server Form Testing

Mcp Server Form Testing

Domain Finder MCP Server

Domain Finder MCP Server

Intelligent domain name suggestion service that checks real-time availability across multiple providers and works with MCP-compatible tools like Cursor and Claude Code.

OpenBudget MCP Server

OpenBudget MCP Server

Provides access to Israel's OpenBudget API, allowing users to query and search various government budget datasets including budget items, contracts, and support payments.

MCP Unit Test Sensei

MCP Unit Test Sensei

An MCP server that enforces unit testing standards by linting code and guiding agentic coding tools (like Gemini CLI or Claude Code) to follow best practices in test-driven development.

PubChem MCP Server

PubChem MCP Server

🧪 Habilite a los asistentes de IA para buscar y acceder a información sobre compuestos químicos a través de una interfaz MCP sencilla.

GitLab MR Reviewer

GitLab MR Reviewer

CRM Employee Management MCP Server

CRM Employee Management MCP Server

Enables LLMs to interact with a CRM system through natural language to manage employees, including creating, updating, searching, and viewing employee records and statistics.

MCP Server

MCP Server

A Node.js/TypeScript server implementing the Model Context Protocol that provides integrations with GitHub and Notion, allowing automated workflow between these platforms via API endpoints.

Simple MCP Client

Simple MCP Client

Un proyecto de ejemplo que prueba la interacción entre el servidor y el cliente del Protocolo de Contexto del Modelo (MCP).

Bitbucket API MCP Server

Bitbucket API MCP Server

Auto-generated MCP (Multi-Agent Conversation Protocol) Server that enables interaction with Bitbucket's API, allowing agents to perform operations on Bitbucket repositories and resources through natural language.

HCL Domino MCP Server by CData

HCL Domino MCP Server by CData

HCL Domino MCP Server by CData