Zotero MCP Server

Zotero MCP Server

Enables semantic search and management of Zotero reference libraries using PostgreSQL with pg-vector and OpenAI/Ollama embeddings. Provides AI-powered search, full-text extraction, metadata access, annotations, notes, tags, and collections management.

Category
Visit Server

README

Zotero MCP Server

A Model Context Protocol (MCP) server for Zotero that provides semantic search capabilities using PostgreSQL with pg-vector and OpenAI/Ollama embeddings.

This is a fork of the excellent zotero-mcp project with modifications to match my personal workflow (pg-vector instead of chroma, ollama and openai backend instead of local transformers, etc.). I am still in progress of refactoring to fit this project to my personal needs

THIS IS NOT THE OFFICIAL PROJECT AND MY MODIFICATIONY MAY HAVE BUGS. I just use this version for my personal research projects.

At the moment I use the version in this repository against my own OpenAI compatible API gateway.

Features

  • Full Zotero Integration: Access your Zotero library through MCP tools
  • Semantic Search: AI-powered semantic search using PostgreSQL + pg-vector
  • Multiple Embedding Providers: Support for OpenAI and Ollama embeddings
  • Lightweight Architecture: Removed heavy ML dependencies (torch, transformers)
  • High Performance: PostgreSQL backend with optimized vector operations
  • Flexible Configuration: Support for local and remote database instances

Quick Start

Prerequisites

  • Python 3.10+
  • PostgreSQL 15+ with pg-vector extension
  • Zotero desktop application or Zotero Web API credentials
  • OpenAI API key or Ollama installation

Installation

pip install -e .

PostgreSQL Setup

If you have access to a PostgreSQL instance with pg-vector:

-- Connect to your PostgreSQL instance
CREATE DATABASE zotero_mcp;
CREATE USER zotero_user WITH PASSWORD 'your_password';
GRANT ALL PRIVILEGES ON DATABASE zotero_mcp TO zotero_user;

-- Enable pg-vector extension
\c zotero_mcp
CREATE EXTENSION vector;

Configuration

Run the interactive setup:

zotero-mcp setup

Usage with Claude Desktop

{
  "mcpServers": {
    "zotero": {
      "command": "/path/to/zotero-mcp",
      "env": {
        "ZOTERO_DB_HOST": "your_host",
        "ZOTERO_DB_NAME": "zotero_mcp",
        "ZOTERO_EMBEDDING_PROVIDER": "ollama",
        "OLLAMA_HOST": "your_ollama_host"
      }
    }
  }
}

Configuration

Database Configuration

Create ~/.config/zotero-mcp/config.json:

{
  "database": {
    "host": "localhost",
    "port": 5432,
    "database": "zotero_mcp",
    "username": "zotero_user",
    "password": "your_password",
    "schema": "public",
    "pool_size": 5
  },
  "embedding": {
    "provider": "ollama",
    "openai": {
      "api_key": "sk-...",
      "model": "text-embedding-3-small",
      "batch_size": 100
    },
    "ollama": {
      "host": "192.168.1.189:8182",
      "model": "nomic-embed-text",
      "timeout": 60
    }
  },
  "chunking": {
    "chunk_size": 1000,
    "overlap": 100,
    "min_chunk_size": 100,
    "max_chunks_per_item": 10,
    "chunking_strategy": "sentences"
  },
  "semantic_search": {
    "similarity_threshold": 0.7,
    "max_results": 50,
    "update_config": {
      "auto_update": false,
      "update_frequency": "manual",
      "batch_size": 50,
      "parallel_workers": 4
    }
  }
}

Available Tools

Core Zotero Tools

  • zotero_search_items - Search items by text query
  • zotero_search_by_tag - Search items by tags
  • zotero_get_item_metadata - Get item details and metadata
  • zotero_get_item_fulltext - Extract full text from attachments
  • zotero_get_collections - List all collections
  • zotero_get_collection_items - Get items in a collection
  • zotero_get_recent - Get recently added items
  • zotero_get_tags - List all tags
  • zotero_batch_update_tags - Bulk update tags

Semantic Search Tools

  • zotero_semantic_search - AI-powered semantic search
  • zotero_update_search_database - Update embedding database
  • zotero_get_search_database_status - Check database status

Advanced Tools

  • zotero_get_annotations - Extract annotations from PDFs
  • zotero_get_notes - Retrieve notes
  • zotero_search_notes - Search through notes
  • zotero_create_note - Create new notes
  • zotero_advanced_search - Complex multi-criteria search

Semantic Search

The semantic search uses PostgreSQL with pg-vector for efficient vector similarity search:

Database Population

# Initial database population
zotero-mcp update-db --force-rebuild

# Incremental updates
zotero-mcp update-db

# Update with limit (for testing)
zotero-mcp update-db --limit 100

# Check status
zotero-mcp status

Embedding Providers

OpenAI (Recommended)

{
  "embedding": {
    "provider": "openai",
    "openai": {
      "api_key": "sk-...",
      "model": "text-embedding-3-small",
      "batch_size": 100,
      "rate_limit_rpm": 3000
    }
  }
}

Models Available:

  • text-embedding-3-small (1536 dimensions) - Fast and efficient
  • text-embedding-3-large (3072 dimensions) - Higher quality
  • text-embedding-ada-002 (1536 dimensions) - Legacy model

Ollama (Local)

{
  "embedding": {
    "provider": "ollama", 
    "ollama": {
      "host": "http://localhost:11434",
      "model": "nomic-embed-text",
      "timeout": 60
    }
  }
}

Popular Models:

  • nomic-embed-text - Good general purpose embeddings
  • all-minilm - Lightweight and fast
  • mxbai-embed-large - High quality embeddings

To install Ollama models:

ollama pull nomic-embed-text

Architecture

Component Overview

┌─────────────────┐    ┌─────────────────┐
│   Claude MCP    │───▶│  FastMCP Server │
│    Client       │    │   (server.py)   │
└─────────────────┘    └─────────────────┘
                               │
                               ▼
                    ┌─────────────────┐
                    │ Semantic Search │
                    │ (semantic_search.py) │
                    └─────────────────┘
                               │
                    ┌──────────┴──────────┐
                    ▼                     ▼
              ┌──────────────┐    ┌──────────────┐
              │ Vector Client│    │  Embedding   │
              │(vector_client)│    │   Service    │
              └──────────────┘    │(embedding_   │
                     │            │ service.py)  │
                     ▼            └──────────────┘
              ┌──────────────┐           │
              │ PostgreSQL   │           ▼
              │   + pgvector │    ┌──────────────┐
              └──────────────┘    │ OpenAI/Ollama│
                                  │   APIs       │
                                  └──────────────┘

Database Schema

-- Core embeddings table
CREATE TABLE zotero_embeddings (
    id SERIAL PRIMARY KEY,
    item_key VARCHAR(50) UNIQUE NOT NULL,
    item_type VARCHAR(50) NOT NULL,
    title TEXT,
    content TEXT NOT NULL,
    content_hash VARCHAR(64) NOT NULL,
    embedding vector(1536),
    embedding_model VARCHAR(100) NOT NULL,
    embedding_provider VARCHAR(50) NOT NULL,
    metadata JSONB NOT NULL DEFAULT '{}',
    created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
    updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);

-- Optimized indexes
CREATE INDEX idx_zotero_embedding_cosine 
    ON zotero_embeddings USING ivfflat (embedding vector_cosine_ops) 
    WITH (lists = 100);
CREATE INDEX idx_zotero_metadata_gin 
    ON zotero_embeddings USING gin(metadata);

License

MIT License - see LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured