Zotero MCP Server
Enables semantic search and management of Zotero reference libraries using PostgreSQL with pg-vector and OpenAI/Ollama embeddings. Provides AI-powered search, full-text extraction, metadata access, annotations, notes, tags, and collections management.
README
Zotero MCP Server
A Model Context Protocol (MCP) server for Zotero that provides semantic search capabilities using PostgreSQL with pg-vector and OpenAI/Ollama embeddings.
This is a fork of the excellent zotero-mcp project with modifications to match my personal workflow (pg-vector instead of chroma, ollama and openai backend instead of local transformers, etc.). I am still in progress of refactoring to fit this project to my personal needs
THIS IS NOT THE OFFICIAL PROJECT AND MY MODIFICATIONY MAY HAVE BUGS. I just use this version for my personal research projects.
At the moment I use the version in this repository against my own OpenAI compatible API gateway.
Features
- Full Zotero Integration: Access your Zotero library through MCP tools
- Semantic Search: AI-powered semantic search using PostgreSQL + pg-vector
- Multiple Embedding Providers: Support for OpenAI and Ollama embeddings
- Lightweight Architecture: Removed heavy ML dependencies (torch, transformers)
- High Performance: PostgreSQL backend with optimized vector operations
- Flexible Configuration: Support for local and remote database instances
Quick Start
Prerequisites
- Python 3.10+
- PostgreSQL 15+ with pg-vector extension
- Zotero desktop application or Zotero Web API credentials
- OpenAI API key or Ollama installation
Installation
pip install -e .
PostgreSQL Setup
If you have access to a PostgreSQL instance with pg-vector:
-- Connect to your PostgreSQL instance
CREATE DATABASE zotero_mcp;
CREATE USER zotero_user WITH PASSWORD 'your_password';
GRANT ALL PRIVILEGES ON DATABASE zotero_mcp TO zotero_user;
-- Enable pg-vector extension
\c zotero_mcp
CREATE EXTENSION vector;
Configuration
Run the interactive setup:
zotero-mcp setup
Usage with Claude Desktop
{
"mcpServers": {
"zotero": {
"command": "/path/to/zotero-mcp",
"env": {
"ZOTERO_DB_HOST": "your_host",
"ZOTERO_DB_NAME": "zotero_mcp",
"ZOTERO_EMBEDDING_PROVIDER": "ollama",
"OLLAMA_HOST": "your_ollama_host"
}
}
}
}
Configuration
Database Configuration
Create ~/.config/zotero-mcp/config.json:
{
"database": {
"host": "localhost",
"port": 5432,
"database": "zotero_mcp",
"username": "zotero_user",
"password": "your_password",
"schema": "public",
"pool_size": 5
},
"embedding": {
"provider": "ollama",
"openai": {
"api_key": "sk-...",
"model": "text-embedding-3-small",
"batch_size": 100
},
"ollama": {
"host": "192.168.1.189:8182",
"model": "nomic-embed-text",
"timeout": 60
}
},
"chunking": {
"chunk_size": 1000,
"overlap": 100,
"min_chunk_size": 100,
"max_chunks_per_item": 10,
"chunking_strategy": "sentences"
},
"semantic_search": {
"similarity_threshold": 0.7,
"max_results": 50,
"update_config": {
"auto_update": false,
"update_frequency": "manual",
"batch_size": 50,
"parallel_workers": 4
}
}
}
Available Tools
Core Zotero Tools
zotero_search_items- Search items by text queryzotero_search_by_tag- Search items by tagszotero_get_item_metadata- Get item details and metadatazotero_get_item_fulltext- Extract full text from attachmentszotero_get_collections- List all collectionszotero_get_collection_items- Get items in a collectionzotero_get_recent- Get recently added itemszotero_get_tags- List all tagszotero_batch_update_tags- Bulk update tags
Semantic Search Tools
zotero_semantic_search- AI-powered semantic searchzotero_update_search_database- Update embedding databasezotero_get_search_database_status- Check database status
Advanced Tools
zotero_get_annotations- Extract annotations from PDFszotero_get_notes- Retrieve noteszotero_search_notes- Search through noteszotero_create_note- Create new noteszotero_advanced_search- Complex multi-criteria search
Semantic Search
The semantic search uses PostgreSQL with pg-vector for efficient vector similarity search:
Database Population
# Initial database population
zotero-mcp update-db --force-rebuild
# Incremental updates
zotero-mcp update-db
# Update with limit (for testing)
zotero-mcp update-db --limit 100
# Check status
zotero-mcp status
Embedding Providers
OpenAI (Recommended)
{
"embedding": {
"provider": "openai",
"openai": {
"api_key": "sk-...",
"model": "text-embedding-3-small",
"batch_size": 100,
"rate_limit_rpm": 3000
}
}
}
Models Available:
text-embedding-3-small(1536 dimensions) - Fast and efficienttext-embedding-3-large(3072 dimensions) - Higher qualitytext-embedding-ada-002(1536 dimensions) - Legacy model
Ollama (Local)
{
"embedding": {
"provider": "ollama",
"ollama": {
"host": "http://localhost:11434",
"model": "nomic-embed-text",
"timeout": 60
}
}
}
Popular Models:
nomic-embed-text- Good general purpose embeddingsall-minilm- Lightweight and fastmxbai-embed-large- High quality embeddings
To install Ollama models:
ollama pull nomic-embed-text
Architecture
Component Overview
┌─────────────────┐ ┌─────────────────┐
│ Claude MCP │───▶│ FastMCP Server │
│ Client │ │ (server.py) │
└─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ Semantic Search │
│ (semantic_search.py) │
└─────────────────┘
│
┌──────────┴──────────┐
▼ ▼
┌──────────────┐ ┌──────────────┐
│ Vector Client│ │ Embedding │
│(vector_client)│ │ Service │
└──────────────┘ │(embedding_ │
│ │ service.py) │
▼ └──────────────┘
┌──────────────┐ │
│ PostgreSQL │ ▼
│ + pgvector │ ┌──────────────┐
└──────────────┘ │ OpenAI/Ollama│
│ APIs │
└──────────────┘
Database Schema
-- Core embeddings table
CREATE TABLE zotero_embeddings (
id SERIAL PRIMARY KEY,
item_key VARCHAR(50) UNIQUE NOT NULL,
item_type VARCHAR(50) NOT NULL,
title TEXT,
content TEXT NOT NULL,
content_hash VARCHAR(64) NOT NULL,
embedding vector(1536),
embedding_model VARCHAR(100) NOT NULL,
embedding_provider VARCHAR(50) NOT NULL,
metadata JSONB NOT NULL DEFAULT '{}',
created_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP WITH TIME ZONE DEFAULT CURRENT_TIMESTAMP
);
-- Optimized indexes
CREATE INDEX idx_zotero_embedding_cosine
ON zotero_embeddings USING ivfflat (embedding vector_cosine_ops)
WITH (lists = 100);
CREATE INDEX idx_zotero_metadata_gin
ON zotero_embeddings USING gin(metadata);
License
MIT License - see LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.