Zintlr MCP Server
Integrates LLMs with the Zintlr sales intelligence platform to search for prospects, companies, and contact information. It provides tools for profile retrieval, lead generation, and technology stack analysis via a remote MCP interface with secure OAuth authentication.
README
Zintlr MCP Server
Remote MCP (Model Context Protocol) server for LLM integration with Zintlr sales intelligence platform.
Overview
This server allows LLM users to connect to Zintlr directly from their MCP client's Settings → Connectors interface by simply pasting the server URL.
LLM Client → MCP Server (mcp.zintlr.com) → Zintlr APIs (api.zintlr.com)
Features
- Remote MCP Protocol: Works with any MCP-compatible LLM client
- OAuth Passthrough: Redirects to Zintlr login, stores existing JWT tokens
- Direct API Access: Bypasses auth.zintlr.com proxy, calls api.zintlr.com directly
- 13 Tools: Search prospects, get profiles, unlock contacts, and more
Quick Start
1. Configure Environment
cp .env.example .env
Edit .env with your secrets:
CIPHER_SECRET: Same asprocess.env.CIPHERin Next.js proxyCAPTCHA_TOKEN: Same asCAPTCHA_TOKENin Next.js proxyMCP_SERVER_URL: Public URL of this server
2. Run with Docker
docker-compose up -d
3. Run Locally (Development)
pip install -r requirements.txt
uvicorn app.main:app --reload --port 8000
User Setup
- Open your MCP-compatible LLM client (e.g., Claude, etc.)
- Go to Settings → Connectors
- Click "Add custom connector"
- Enter URL:
https://mcp.zintlr.com(your deployed URL) - Complete OAuth flow (redirects to Zintlr login)
- Done! Tools are now available in your LLM
Available Tools
| Tool | Description |
|---|---|
search_prospects |
Search people/companies with filters |
search_by_company_name |
Company name autocomplete |
search_by_company_domain |
Find company by domain |
search_by_job_title |
Job title autocomplete |
search_by_location |
Location autocomplete |
search_by_technology |
Tech stack autocomplete |
get_person_profile |
Get detailed person info |
get_company_profile |
Get detailed company info |
unlock_contact_info |
Reveal email/phone (uses credits) |
fetch_profile |
Get current user's profile |
get_search_history |
View recent searches |
get_saved_searches |
View saved search templates |
save_search |
Save a search for later |
Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ LLM Client │────▶│ MCP Server │────▶│ Zintlr API │
│ (User's app) │ │ (This service) │ │ api.zintlr.com │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │
│ JSON-RPC │ HTTP + Decrypted JWT
│ + Session ID │ + Headers (Auth, visitor-id)
│ │
Authentication Flow
- User adds connector URL in LLM client
- LLM client requests OAuth metadata from
/.well-known/oauth-authorization-server - User redirected to
/oauth/authorize→ Zintlr login - After login, Zintlr redirects to
/oauth/callbackwith JWT tokens - MCP server stores tokens in Redis, returns session ID to LLM client
- LLM client uses session ID as Bearer token for MCP requests
- MCP server decrypts tokens, calls Zintlr API directly
Proxy Bypass
This server replicates the Next.js proxy logic (auth.zintlr.com):
- Decrypts JWT tokens using
verify_and_decrypt_jwt(token, CIPHER) - Sets
Authorizationheader with decrypted access_token - Sets
visitor-idandclient-ip-addressheaders - Adds decrypted
keyto request body - Calls
api.zintlr.comdirectly
API Endpoints
| Endpoint | Method | Description |
|---|---|---|
/ |
POST | MCP JSON-RPC endpoint |
/ |
GET | Server info |
/.well-known/oauth-authorization-server |
GET | OAuth metadata |
/oauth/authorize |
GET | Start OAuth flow |
/oauth/callback |
GET | OAuth callback from Zintlr |
/oauth/token |
POST | Exchange code for token |
/oauth/revoke |
POST | Revoke token (logout) |
/health |
GET | Health check |
Environment Variables
| Variable | Default | Description |
|---|---|---|
ZINTLR_API_BASE_URL |
https://api.zintlr.com |
Direct API URL |
ZINTLR_FRONTEND_URL |
https://auth.zintlr.com |
Frontend for OAuth |
CIPHER_SECRET |
- | JWT decryption secret |
CAPTCHA_TOKEN |
- | API authentication token |
MCP_SERVER_URL |
https://mcp.zintlr.com |
This server's public URL |
REDIS_URL |
redis://localhost:6379 |
Redis for sessions |
SESSION_EXPIRE_SECONDS |
3600 |
Session TTL (1 hour) |
HOST |
0.0.0.0 |
Server host |
PORT |
8000 |
Server port |
DEBUG |
false |
Debug mode |
Testing
Test MCP Endpoint
# Initialize
curl -X POST http://localhost:8000/ \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"protocolVersion":"2025-06-18","capabilities":{},"clientInfo":{"name":"test","version":"1.0"}}}'
# List tools
curl -X POST http://localhost:8000/ \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":2,"method":"tools/list","params":{}}'
Test Health
curl http://localhost:8000/health
Deployment
Docker
docker build -t zintlr-mcp-server .
docker run -p 8000:8000 --env-file .env zintlr-mcp-server
Docker Compose
docker-compose up -d
Production Checklist
- [ ] Set
DEBUG=false - [ ] Configure proper
MCP_SERVER_URLwith HTTPS - [ ] Set secure
CIPHER_SECRETandCAPTCHA_TOKEN - [ ] Configure Redis persistence
- [ ] Set up reverse proxy (nginx) with SSL
- [ ] Configure DNS for
mcp.zintlr.com
License
Proprietary - Zintlr
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.