Zignet
Enables AI-powered Zig programming assistance through code generation, debugging, and documentation explanation. Uses local LLM models to provide idiomatic Zig code creation and analysis capabilities.
README
ZigNet
MCP Server for Zig — Intelligent code analysis, validation, and documentation powered by a fine-tuned LLM
ZigNet integrates with Claude (and other MCP-compatible LLMs) to provide real-time Zig code analysis without leaving your chat interface.
🎯 Features
MCP Tools
<details> <summary><b>🔍 analyze_zig</b> — Syntax and type checking with official Zig compiler</summary>
Analyze Zig code for syntax errors, type mismatches, and semantic issues using zig ast-check.
Example usage:
User: "Analyze this Zig code"
Claude: [calls analyze_zig tool]
Response: "✅ Syntax: Valid | Type Check: PASS | Warnings: 0"
Capabilities:
- Lexical analysis (tokenization)
- Syntax parsing (AST generation)
- Type checking and validation
- Semantic error detection
- Line/column error reporting
</details>
<details> <summary><b>✨ compile_zig</b> — Format and validate Zig code</summary>
Validate and format Zig code using zig fmt, generating clean, idiomatic output.
Example:
// Input (messy)
fn add(a:i32,b:i32)i32{return a+b;}
// Output (formatted)
fn add(a: i32, b: i32) i32 {
return a + b;
}
Capabilities:
- Code formatting (2-space indentation)
- Syntax validation
- Best practices enforcement
- Preserves semantics
</details>
<details> <summary><b>📖 get_zig_docs</b> — AI-powered documentation lookup (coming soon)</summary>
Retrieve Zig documentation and explanations for language features using a fine-tuned LLM.
Example:
Query: "comptime"
Response: "comptime enables compile-time evaluation in Zig..."
Powered by:
- Fine-tuned Qwen2.5-Coder-7B model
- 13,756 examples from Zig 0.13-0.15
- Specialized on advanced Zig idioms (comptime, generics, error handling)
</details>
<details> <summary><b>🔧 suggest_fix</b> — Intelligent error fix suggestions (coming soon)</summary>
Get intelligent code fix suggestions for Zig errors using AI-powered analysis.
Example:
// Error: "Type mismatch: cannot assign string to i32"
var x: i32 = "hello";
// Suggestions:
// Option 1: var x: []const u8 = "hello"; // If you meant string
// Option 2: var x: i32 = 42; // If you meant integer
Features:
- Context-aware suggestions
- Multiple fix options
- Explanation of the issue
- Zig idiom recommendations
</details>
📖 Usage
ZigNet is an MCP server — configure it once in your MCP client, then use it naturally in conversation.
<details> <summary><b>🖥️ Claude Desktop</b></summary>
Configuration file location:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json
Add this:
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
Then restart Claude Desktop and start using:
You: "Analyze this Zig code for errors"
[paste code]
Claude: [uses analyze_zig tool]
"Found 1 type error: variable 'x' expects i32 but got []const u8"
</details>
<details> <summary><b>🔧 VS Code (with GitHub Copilot)</b></summary>
Method 1: VS Code Marketplace (coming soon)
- Open VS Code Extensions (
Ctrl+Shift+X/Cmd+Shift+X) - Search for
@mcp zignet - Click Install
- Restart VS Code
Method 2: Manual configuration (available now)
- Install GitHub Copilot extension (if not already installed)
- Open Copilot settings
- Add to MCP servers config:
{
"mcpServers": {
"zignet": {
"command": "npx",
"args": ["-y", "zignet"]
}
}
}
Then restart VS Code and Copilot will have access to ZigNet tools.
</details>
What happens after configuration?
- First use:
npxdownloads and caches ZigNet automatically - Zig compiler: Downloads on-demand (supports Zig 0.13, 0.14, 0.15)
- Tools available:
analyze_zig,compile_zig(+get_zig_docs,suggest_fixcoming soon) - Zero maintenance: Updates automatically via
npx -y zignet
🏗️ Architecture
┌─────────────────────────────────────────────────────┐
│ Claude / MCP Client │
└────────────────────┬────────────────────────────────┘
│ MCP Protocol (JSON-RPC)
┌────────────────────▼────────────────────────────────┐
│ ZigNet MCP Server (TypeScript) │
│ ┌──────────────────────────────────────────────┐ │
│ │ Tool Handlers │ │
│ │ - analyze_zig │ │
│ │ - compile_zig │ │
│ │ - get_zig_docs │ │
│ │ - suggest_fix │ │
│ └─────────────┬────────────────────────────────┘ │
│ ▼ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Zig Compiler Integration │ │
│ │ - zig ast-check (syntax + type validation) │ │
│ │ - zig fmt (official formatter) │ │
│ │ - Auto-detects system Zig installation │ │
│ │ - Falls back to downloading if needed │ │
│ └─────────────┬────────────────────────────────┘ │
│ ▼ │
│ ┌──────────────────────────────────────────────┐ │
│ │ Fine-tuned LLM (Qwen2.5-Coder-7B) │ │
│ │ - Documentation lookup │ │
│ │ - Intelligent suggestions │ │
│ └──────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────┘
Why this architecture?
- Official Zig compiler (100% accurate, always up-to-date) instead of custom parser
- System integration (uses existing Zig installation if available)
- LLM-powered suggestions (get_zig_docs, suggest_fix) for intelligence
- No external API calls (local inference via node-llama-cpp)
- Fast (< 100ms for validation, < 2s for LLM suggestions)
Note: When Zig releases a new version (e.g., 0.16.0), ZigNet will need to re-train the LLM model on updated documentation and examples.
🧪 Development Status
| Component | Status | Notes |
|---|---|---|
| Zig Compiler Wrapper | ✅ Complete | ast-check + fmt integration |
| System Zig Detection | ✅ Complete | Auto-detects installed Zig versions |
| Multi-version Cache | ✅ Complete | Downloads Zig 0.13-0.15 on demand |
| MCP Server | ✅ Complete | All 4 tools fully implemented |
| LLM Fine-tuning | ✅ Complete | Trained on 13,756 Zig examples |
| get_zig_docs | ✅ Complete | LLM-powered documentation lookup |
| suggest_fix | ✅ Complete | LLM-powered intelligent suggestions |
| GGUF Conversion | ✅ Complete | Q4_K_M quantized (4.4GB) |
| E2E Testing | ✅ Complete | 27/27 tests passing (8.7s) |
| Claude Integration | ⏳ Planned | Final deployment to Claude Desktop |
Current Phase: Ready for deployment - All core features complete
🧪 Testing
Running Tests
# Run all tests (unit + E2E)
pnpm test
# Run only E2E tests
pnpm test tests/e2e/mcp-integration.test.ts
# Run deterministic tests only (no LLM required)
SKIP_LLM_TESTS=1 pnpm test tests/e2e
# Watch mode for development
pnpm test:watch
Test Coverage
E2E Test Suite: 27 tests covering all MCP tools
| Tool | Tests | Type | Pass Rate |
|---|---|---|---|
| analyze_zig | 4 | Deterministic | 100% |
| compile_zig | 3 | Deterministic | 100% |
| get_zig_docs | 5 | LLM-powered | 100% |
| suggest_fix | 5 | LLM-powered | 100% |
| Integration | 3 | Mixed | 100% |
| Performance | 3 | Stress tests | 100% |
| Edge Cases | 4 | Error paths | 100% |
Execution time: 8.7 seconds (without LLM model, deterministic only)
With LLM model: ~60-120 seconds (includes model loading + inference)
Test Behavior
- Deterministic tests (12 tests): Always run, use Zig compiler directly
- LLM tests (15 tests): Auto-skip if model not found, graceful degradation
- CI/CD ready: Runs on GitHub Actions without GPU requirements
For detailed testing guide, see tests/e2e/README.md
📦 Project Structure
zignet/
├── src/
│ ├── config.ts # Environment-based configuration
│ ├── mcp-server.ts # MCP protocol handler
│ ├── zig/
│ │ ├── manager.ts # Multi-version Zig download/cache
│ │ └── executor.ts # zig ast-check + fmt wrapper
│ ├── llm/
│ │ ├── model-downloader.ts # Auto-download GGUF from HuggingFace
│ │ └── session.ts # node-llama-cpp integration
│ └── tools/
│ ├── analyze.ts # analyze_zig tool (COMPLETE)
│ ├── compile.ts # compile_zig tool (COMPLETE)
│ ├── docs.ts # get_zig_docs tool (COMPLETE)
│ └── suggest.ts # suggest_fix tool (COMPLETE)
├── scripts/
│ ├── train-qwen-standard.py # Fine-tuning script (COMPLETE)
│ ├── scrape-zig-repos.js # Dataset collection
│ ├── install-zig.js # Zig version installer
│ └── test-config.cjs # Config system tests
├── data/
│ ├── training/ # 13,756 examples (train/val/test)
│ └── zig-docs/ # Scraped documentation
├── models/
│ └── zignet-qwen-7b/ # Fine-tuned model + LoRA adapters
├── tests/
│ ├── *.test.ts # Unit tests (lexer, parser, etc.)
│ └── e2e/
│ ├── mcp-integration.test.ts # 27 E2E tests
│ └── README.md # Testing guide
├── docs/
│ ├── AGENTS.md # Detailed project spec
│ ├── DEVELOPMENT.md # Development guide
│ └── TESTING.md # Testing documentation
└── README.md # This file
🤖 Model Details
Base Model: Qwen/Qwen2.5-Coder-7B-Instruct
Fine-tuning: QLoRA (4-bit) on 13,756 Zig examples
Dataset: 97% real-world repos (Zig 0.13-0.15), 3% documentation
Training: RTX 3090 (24GB VRAM), 3 epochs, ~8 hours
Output: fulgidus/zignet-qwen2.5-coder-7b (HuggingFace)
Quantization: Q4_K_M (~4GB GGUF for node-llama-cpp)
Why Qwen2.5-Coder-7B?
- Best Zig syntax understanding (benchmarked vs 14 models)
- Modern idioms (comptime, generics, error handling)
- Fast inference (~15-20s per query post-quantization)
📊 Benchmarks
| Model | Pass Rate | Avg Time | Quality | Notes |
|---|---|---|---|---|
| Qwen2.5-Coder-7B | 100% | 29.58s | ⭐⭐⭐⭐⭐ | SELECTED - Best idioms |
| DeepSeek-Coder-6.7B | 100% | 27.86s | ⭐⭐⭐⭐⭐ | Didactic, verbose |
| Llama3.2-3B | 100% | 12.27s | ⭐⭐⭐⭐ | Good balance |
| CodeLlama-7B | 100% | 24.61s | ⭐⭐⭐ | Confuses Zig/Rust |
| Qwen2.5-Coder-0.5B | 100% | 3.94s | ❌ | Invents syntax |
Full benchmarks: scripts/test-results/
🛠️ Development
# Run tests
pnpm test
# Run specific component tests
pnpm test -- lexer
pnpm test -- parser
pnpm test -- type-checker
# Watch mode
pnpm test:watch
# Linting
pnpm lint
pnpm lint:fix
# Build
pnpm build
🤝 Contributing
See AGENTS.md for detailed project specification and development phases.
Current needs:
- Testing on diverse Zig codebases
- Edge case discovery (parser/type-checker)
- Performance optimization
- Documentation improvements
📄 License
WTFPL v2 — Do What The Fuck You Want To Public License
🔗 Links
- Repository: https://github.com/fulgidus/zignet
- Model (post-training): https://huggingface.co/fulgidus/zignet-qwen2.5-coder-7b
- MCP Protocol: https://modelcontextprotocol.io
- Zig Language: https://ziglang.org
Status: ✅ Phase 4 Complete - Ready for deployment (fine-tuning complete, E2E tests passing)
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.