Zig Server
Provides Zig language tooling and code analysis, enhancing AI capabilities with Zig-specific functions like code optimization, compute unit estimation, code generation, and recommendations for best practices.
openSVM
Tools
optimize_code
Optimize Zig code for better performance
estimate_compute_units
Estimate computational complexity and resource usage
generate_code
Generate Zig code from natural language description
get_recommendations
Get code improvement recommendations and best practices
README
Zig MCP Server
A Model Context Protocol (MCP) server that provides Zig language tooling, code analysis, and documentation access. This server enhances AI capabilities with Zig-specific functionality including code optimization, compute unit estimation, code generation, and best practices recommendations.
Features
Tools
1. Code Optimization (optimize_code
)
Analyzes and optimizes Zig code with support for different optimization levels:
- Debug
- ReleaseSafe
- ReleaseFast
- ReleaseSmall
// Example usage
{
"code": "const std = @import(\"std\");\n...",
"optimizationLevel": "ReleaseFast"
}
2. Compute Units Estimation (estimate_compute_units
)
Estimates computational complexity and resource usage of Zig code:
- Memory usage analysis
- Time complexity estimation
- Allocation patterns detection
// Example usage
{
"code": "const std = @import(\"std\");\n..."
}
3. Code Generation (generate_code
)
Generates Zig code from natural language descriptions with support for:
- Error handling
- Testing
- Performance optimizations
- Documentation
// Example usage
{
"prompt": "Create a function that sorts an array of integers",
"context": "Should handle empty arrays and use comptime when possible"
}
4. Code Recommendations (get_recommendations
)
Provides code improvement recommendations and best practices:
- Style and conventions
- Design patterns
- Safety considerations
- Performance insights
// Example usage
{
"code": "const std = @import(\"std\");\n...",
"prompt": "Improve performance and safety"
}
Resources
-
Language Reference (
zig://docs/language-reference
)- Official Zig language documentation
- Syntax and features guide
- Best practices
-
Standard Library Documentation (
zig://docs/std-lib
)- Complete std library reference
- Function signatures and usage
- Examples and notes
-
Popular Repositories (
zig://repos/popular
)- Top Zig projects on GitHub
- Community examples and patterns
- Real-world implementations
Installation
- Clone the repository:
git clone [repository-url]
cd zig-mcp-server
- Install dependencies:
npm install
- Build the server:
npm run build
- Configure environment variables:
# Create a GitHub token for better API rate limits
# https://github.com/settings/tokens
# Required scope: public_repo
GITHUB_TOKEN=your_token_here
- Add to MCP settings:
{
"mcpServers": {
"zig": {
"command": "node",
"args": ["/path/to/zig-mcp-server/build/index.js"],
"env": {
"GITHUB_TOKEN": "your_token_here",
"NODE_OPTIONS": "--experimental-vm-modules"
},
"restart": true
}
}
}
Usage Examples
1. Optimize Code
const result = await useMcpTool("zig", "optimize_code", {
code: `
pub fn fibonacci(n: u64) u64 {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
`,
optimizationLevel: "ReleaseFast"
});
2. Estimate Compute Units
const result = await useMcpTool("zig", "estimate_compute_units", {
code: `
pub fn bubbleSort(arr: []i32) void {
var i: usize = 0;
while (i < arr.len) : (i += 1) {
var j: usize = 0;
while (j < arr.len - 1) : (j += 1) {
if (arr[j] > arr[j + 1]) {
const temp = arr[j];
arr[j] = arr[j + 1];
arr[j + 1] = temp;
}
}
}
}
`
});
3. Generate Code
const result = await useMcpTool("zig", "generate_code", {
prompt: "Create a thread-safe counter struct",
context: "Should use atomic operations and handle overflow"
});
4. Get Recommendations
const result = await useMcpTool("zig", "get_recommendations", {
code: `
pub fn main() !void {
var list = std.ArrayList(u8).init(allocator);
var i: u32 = 0;
while (true) {
if (i >= 100) break;
try list.append(@intCast(u8, i));
i += 1;
}
}
`,
prompt: "performance"
});
Development
Project Structure
zig-mcp-server/
├── src/
│ └── index.ts # Main server implementation
├── build/ # Compiled JavaScript
├── package.json # Dependencies and scripts
└── tsconfig.json # TypeScript configuration
Building
# Development build with watch mode
npm run watch
# Production build
npm run build
Testing
npm test
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
MIT License - see the LICENSE file for details.
Recommended Servers

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Mult Fetch MCP Server
A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
Hyperbrowser MCP Server
Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to
React MCP
react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts