Zig Server

Zig Server

Provides Zig language tooling and code analysis, enhancing AI capabilities with Zig-specific functions like code optimization, compute unit estimation, code generation, and recommendations for best practices.

openSVM

Digital Note Management
Remote Shell Execution
Advanced AI Reasoning
Programming Docs Access
AI Memory Systems
Database Interaction
AI Content Generation
Git Management Tools
Data & App Analysis
Visit Server

Tools

optimize_code

Optimize Zig code for better performance

estimate_compute_units

Estimate computational complexity and resource usage

generate_code

Generate Zig code from natural language description

get_recommendations

Get code improvement recommendations and best practices

README

Zig MCP Server

A Model Context Protocol (MCP) server that provides Zig language tooling, code analysis, and documentation access. This server enhances AI capabilities with Zig-specific functionality including code optimization, compute unit estimation, code generation, and best practices recommendations.

Features

Tools

1. Code Optimization (optimize_code)

Analyzes and optimizes Zig code with support for different optimization levels:

  • Debug
  • ReleaseSafe
  • ReleaseFast
  • ReleaseSmall
// Example usage
{
  "code": "const std = @import(\"std\");\n...",
  "optimizationLevel": "ReleaseFast"
}

2. Compute Units Estimation (estimate_compute_units)

Estimates computational complexity and resource usage of Zig code:

  • Memory usage analysis
  • Time complexity estimation
  • Allocation patterns detection
// Example usage
{
  "code": "const std = @import(\"std\");\n..."
}

3. Code Generation (generate_code)

Generates Zig code from natural language descriptions with support for:

  • Error handling
  • Testing
  • Performance optimizations
  • Documentation
// Example usage
{
  "prompt": "Create a function that sorts an array of integers",
  "context": "Should handle empty arrays and use comptime when possible"
}

4. Code Recommendations (get_recommendations)

Provides code improvement recommendations and best practices:

  • Style and conventions
  • Design patterns
  • Safety considerations
  • Performance insights
// Example usage
{
  "code": "const std = @import(\"std\");\n...",
  "prompt": "Improve performance and safety"
}

Resources

  1. Language Reference (zig://docs/language-reference)

    • Official Zig language documentation
    • Syntax and features guide
    • Best practices
  2. Standard Library Documentation (zig://docs/std-lib)

    • Complete std library reference
    • Function signatures and usage
    • Examples and notes
  3. Popular Repositories (zig://repos/popular)

    • Top Zig projects on GitHub
    • Community examples and patterns
    • Real-world implementations

Installation

  1. Clone the repository:
git clone [repository-url]
cd zig-mcp-server
  1. Install dependencies:
npm install
  1. Build the server:
npm run build
  1. Configure environment variables:
# Create a GitHub token for better API rate limits
# https://github.com/settings/tokens
# Required scope: public_repo
GITHUB_TOKEN=your_token_here
  1. Add to MCP settings:
{
  "mcpServers": {
    "zig": {
      "command": "node",
      "args": ["/path/to/zig-mcp-server/build/index.js"],
      "env": {
        "GITHUB_TOKEN": "your_token_here",
        "NODE_OPTIONS": "--experimental-vm-modules"
      },
      "restart": true
    }
  }
}

Usage Examples

1. Optimize Code

const result = await useMcpTool("zig", "optimize_code", {
  code: `
    pub fn fibonacci(n: u64) u64 {
        if (n <= 1) return n;
        return fibonacci(n - 1) + fibonacci(n - 2);
    }
  `,
  optimizationLevel: "ReleaseFast"
});

2. Estimate Compute Units

const result = await useMcpTool("zig", "estimate_compute_units", {
  code: `
    pub fn bubbleSort(arr: []i32) void {
        var i: usize = 0;
        while (i < arr.len) : (i += 1) {
            var j: usize = 0;
            while (j < arr.len - 1) : (j += 1) {
                if (arr[j] > arr[j + 1]) {
                    const temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
            }
        }
    }
  `
});

3. Generate Code

const result = await useMcpTool("zig", "generate_code", {
  prompt: "Create a thread-safe counter struct",
  context: "Should use atomic operations and handle overflow"
});

4. Get Recommendations

const result = await useMcpTool("zig", "get_recommendations", {
  code: `
    pub fn main() !void {
        var list = std.ArrayList(u8).init(allocator);
        var i: u32 = 0;
        while (true) {
            if (i >= 100) break;
            try list.append(@intCast(u8, i));
            i += 1;
        }
    }
  `,
  prompt: "performance"
});

Development

Project Structure

zig-mcp-server/
├── src/
│   └── index.ts    # Main server implementation
├── build/          # Compiled JavaScript
├── package.json    # Dependencies and scripts
└── tsconfig.json   # TypeScript configuration

Building

# Development build with watch mode
npm run watch

# Production build
npm run build

Testing

npm test

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

MIT License - see the LICENSE file for details.

Recommended Servers

VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Mult Fetch MCP Server

Mult Fetch MCP Server

A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).

Featured
Local
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
Hyperbrowser MCP Server

Hyperbrowser MCP Server

Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to

Featured
Local
React MCP

React MCP

react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Featured
Local