zig-mcp
MCP server for Zig that connects AI coding assistants to ZLS (Zig Language Server) via LSP. Provides 16 tools for code intelligence (hover, go-to-definition, references, completions, diagnostics, rename, format) and build/test operations.
README
zig-mcp
MCP server for Zig that connects AI coding assistants to ZLS via the Language Server Protocol.
Works with Claude Code, Cursor, Windsurf, and any MCP-compatible client.
AI assistant <--(MCP stdio)--> zig-mcp <--(LSP pipes)--> ZLS
|
zig build / test / check
Requirements
Install
Claude Code plugin (recommended)
Install directly from the Claude Code interface — no manual build needed:
# 1. Add the marketplace
/plugin marketplace add nzrsky/zig-mcp
# 2. Install the plugin
/plugin install zig-mcp@zig
Or as a one-liner from the terminal:
claude plugin marketplace add nzrsky/zig-mcp && claude plugin install zig-mcp@zig
The binary is built automatically on first use. Just make sure zig and zls are in your PATH.
Manual build
git clone https://github.com/nzrsky/zig-mcp.git
cd zig-mcp
zig build -Doptimize=ReleaseFast
Binary is at zig-out/bin/zig-mcp.
Setup (manual install only)
If you installed via the plugin system, skip this section — everything is configured automatically.
Claude Code
# add globally
claude mcp add zig-mcp -- /absolute/path/to/zig-mcp --workspace /path/to/your/zig/project
# add for current project only
claude mcp add --scope project zig-mcp -- /absolute/path/to/zig-mcp --workspace /path/to/your/zig/project
Or edit ~/.claude/mcp_servers.json:
{
"mcpServers": {
"zig-mcp": {
"command": "/absolute/path/to/zig-mcp",
"args": ["--workspace", "/path/to/your/zig/project"]
}
}
}
If you omit
--workspace, zig-mcp uses the current working directory.
Cursor
Add to .cursor/mcp.json in your project:
{
"mcpServers": {
"zig-mcp": {
"command": "/absolute/path/to/zig-mcp",
"args": ["--workspace", "/path/to/your/zig/project"]
}
}
}
Windsurf
Add to ~/.codeium/windsurf/mcp_config.json:
{
"mcpServers": {
"zig-mcp": {
"command": "/absolute/path/to/zig-mcp",
"args": ["--workspace", "/path/to/your/zig/project"]
}
}
}
Options
--workspace, -w <path> Project root directory (default: cwd)
--zls-path <path> Path to ZLS binary (default: auto-detect from PATH)
--help, -h Show help
--version Show version
Tools
Code intelligence (via ZLS)
| Tool | What it does |
|---|---|
zig_hover |
Type info and docs for a symbol |
zig_definition |
Go to definition |
zig_references |
Find all references |
zig_completion |
Completion suggestions |
zig_diagnostics |
Errors and warnings for a file |
zig_format |
Format a file |
zig_rename |
Rename a symbol across the workspace |
zig_document_symbols |
List all symbols in a file |
zig_workspace_symbols |
Search symbols across the project |
zig_code_action |
Quick fixes and refactors for a range |
zig_signature_help |
Function signature at cursor |
Build & run
| Tool | What it does |
|---|---|
zig_build |
Run zig build with optional args |
zig_test |
Run tests (whole project or single file, with optional filter) |
zig_check |
Run zig ast-check on a file |
zig_version |
Show Zig and ZLS versions |
zig_manage |
Manage Zig versions via zvm |
How it works
zig-mcp spawns ZLS as a child process and talks to it over stdin/stdout using the LSP protocol (Content-Length framing). On the other side, it speaks MCP (newline-delimited JSON-RPC) to the AI assistant.
Three threads:
- main -- reads MCP requests, dispatches tool calls, writes responses
- reader -- reads LSP responses from ZLS, correlates by request ID
- stderr -- forwards ZLS stderr to the server log
If ZLS crashes, zig-mcp automatically restarts it and re-opens all tracked documents.
Files are opened in ZLS lazily on first access -- no need to manage document state manually.
Development
# build
zig build
# run tests (~75 unit tests)
zig build test
# run manually
echo '{"jsonrpc":"2.0","id":1,"method":"initialize","params":{"capabilities":{}}}' | \
zig-out/bin/zig-mcp --workspace . 2>/dev/null
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.