ZAI MCP Server
Provides web search, content extraction, and AI summarization capabilities using the GLM-4.7-Flash model. It enables users to perform web searches, fetch website data, and generate concise content summaries through integrated tools.
README
ZAI MCP Server
A Model Context Protocol (MCP) server that provides web search, content fetching, and AI-powered summarization capabilities using ZAI's GLM-4.7-Flash model.
Features
- Web Search: Search the web using DuckDuckGo
- Content Fetching: Clean and extract text from any website
- AI Summarization: Summarize web content using GLM-4.7-Flash
- Combined Workflows: Search, fetch, and summarize in one operation
- Fast & Efficient: Uses flash model for quick responses
Tools
search_web
Search the web for information.
Parameters:
query(string, required): Search querynum_results(number, optional): Number of results (1-10, default: 5)
Returns:
{
"query": "search term",
"count": 5,
"results": [
{
"title": "Result Title",
"url": "https://example.com",
"snippet": "Brief snippet of the content..."
}
]
}
fetch_and_summarize
Fetch a website URL and summarize its content.
Parameters:
url(string, required): Website URL to fetchmax_content_length(number, optional): Max content length to process (default: 10000)
Returns:
{
"url": "https://example.com/article",
"title": "Article Title",
"summary": "AI-generated summary of the content...",
"content_length": 5000
}
search_and_summarize
Search the web, fetch the top result, and summarize it.
Parameters:
query(string, required): Search queryresult_index(number, optional): Which search result to fetch (1-10, default: 1)
Returns:
{
"query": "search term",
"result_index": 1,
"url": "https://example.com/article",
"title": "Article Title",
"summary": "AI-generated summary...",
"total_results": 10
}
Installation
Prerequisites
- Python 3.8 or higher
- ZAI API key (get one at https://z.ai/model-api)
- pip package manager
Install from source
# Clone the repository
git clone https://github.com/yourusername/zai-mcp-server.git
cd zai-mcp-server
# Install dependencies
pip install -r requirements.txt
# Make server executable
chmod +x src/server.py
Quick Start
# Set your API key
export ZAI_API_KEY="your-zai-api-key"
# Run the server
python src/server.py
Configuration
Environment Variables
| Variable | Description | Required | Default |
|---|---|---|---|
ZAI_API_KEY |
Your ZAI API key | Yes | - |
API Configuration
The server uses the following ZAI API configuration:
- Base URL:
https://api.z.ai/api/paas/v4 - Model:
glm-4.7-flash - Max Tokens: 1000
- Temperature: 0.7
Usage
Standalone Testing
# Test initialization
echo '{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {}}' | python src/server.py
# List available tools
echo '{"jsonrpc": "2.0", "id": 2, "method": "tools/list", "params": {}}' | python src/server.py
# Search the web
echo '{"jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": {"name": "search_web", "arguments": {"query": "AI news", "num_results": 3}}}' | python src/server.py
Integration with Claude Desktop
Add to Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Linux: ~/.config/Claude/claude_desktop_config.json
{
"mcpServers": {
"zai": {
"command": "python3",
"args": ["/absolute/path/to/zai-mcp-server/src/server.py"],
"env": {
"ZAI_API_KEY": "your-zai-api-key"
}
}
}
}
Integration with Cursor
Add to Cursor settings file (~/.cursor/mcp_config.json):
{
"mcpServers": {
"zai": {
"command": "python3",
"args": ["/absolute/path/to/zai-mcp-server/src/server.py"],
"env": {
"ZAI_API_KEY": "your-zai-api-key"
}
}
}
}
Integration with Cline (VS Code)
Add to your MCP settings in VS Code:
{
"mcpServers": [
{
"name": "zai",
"command": "python3",
"args": ["/absolute/path/to/zai-mcp-server/src/server.py"],
"env": {
"ZAI_API_KEY": "${env:ZAI_API_KEY}"
}
}
]
}
Integration with Continue
Add to ~/.continue/config.json:
{
"mcpServers": {
"zai": {
"command": "python3",
"args": ["/absolute/path/to/zai-mcp-server/src/server.py"],
"env": {
"ZAI_API_KEY": "your-zai-api-key"
}
}
}
}
Integration with Roo Code
Add to Roo Code's MCP configuration:
{
"mcpServers": {
"zai": {
"command": "python3",
"args": ["/absolute/path/to/zai-mcp-server/src/server.py"],
"env": {
"ZAI_API_KEY": "your-zai-api-key"
}
}
}
}
OpenCode Native Integration
Setup
OpenCode supports MCP servers natively. To configure:
-
Create/Update the MCP configuration file:
# Default location: ~/.config/opencode/mcp_servers.json mkdir -p ~/.config/opencode nano ~/.config/opencode/mcp_servers.json -
Add ZAI MCP Server configuration:
{ "mcpServers": { "zai": { "name": "ZAI Web Search & Summarization", "description": "Search web and summarize content using GLM-4.7-Flash", "command": "python3", "args": ["/home/op/zai-mcp-server/src/server.py"], "env": { "ZAI_API_KEY": "your-zai-api-key" }, "enabled": true } } } -
Restart OpenCode to load the new MCP server
Usage in OpenCode
Once configured, you can use the MCP server in OpenCode conversations:
User: Search for recent developments in AI and summarize the top result
Assistant: I'll use the ZAI MCP server to search and summarize for you.
[Calls search_and_summarize tool]
The ZAI MCP server found an article about recent AI developments. Here's a summary:
- Main point 1
- Main point 2
- Main point 3
Full article available at: https://example.com/ai-developments
Examples
Example 1: Web Search
# Request
{
"jsonrpc": "2.0",
"id": 1,
"method": "tools/call",
"params": {
"name": "search_web",
"arguments": {
"query": "machine learning trends 2024",
"num_results": 5
}
}
}
# Response
{
"jsonrpc": "2.0",
"id": 1,
"result": {
"content": [
{
"type": "text",
"text": JSON.stringify({
"query": "machine learning trends 2024",
"count": 5,
"results": [...]
})
}
]
}
}
Example 2: Fetch and Summarize
# Request
{
"jsonrpc": "2.0",
"id": 2,
"method": "tools/call",
"params": {
"name": "fetch_and_summarize",
"arguments": {
"url": "https://www.example.com/article"
}
}
}
# Response
{
"jsonrpc": "2.0",
"id": 2,
"result": {
"content": [
{
"type": "text",
"text": JSON.stringify({
"url": "https://www.example.com/article",
"title": "Article Title",
"summary": "Key points:\n• Point 1\n• Point 2\n• Point 3",
"content_length": 5000
})
}
]
}
}
Example 3: Search and Summarize (Combined)
# Request
{
"jsonrpc": "2.0",
"id": 3,
"method": "tools/call",
"params": {
"name": "search_and_summarize",
"arguments": {
"query": "quantum computing breakthrough",
"result_index": 1
}
}
}
# Response
{
"jsonrpc": "2.0",
"id": 3,
"result": {
"content": [
{
"type": "text",
"text": JSON.stringify({
"query": "quantum computing breakthrough",
"result_index": 1,
"url": "https://example.com/quantum-news",
"title": "Major Quantum Computing Breakthrough",
"summary": "Researchers have achieved a significant milestone...",
"total_results": 10
})
}
]
}
}
Testing
Run the test suite to verify the server is working correctly:
python examples/test_server.py
Expected output:
============================================================
ZAI MCP Server Test Suite
============================================================
Testing initialization...
✓ Initialize: mcp-zai-server v1.0.0
Testing tools list...
✓ Available tools (3):
- search_web: Search the web for information using DuckDuckGo
- fetch_and_summarize: Fetch a website URL and summarize its content using GLM-4.7-Flash
- search_and_summarize: Search the web, fetch top result, and summarize using GLM-4.7-Flash
Testing resources list...
✓ Available resources (1):
- zai://status: Current status of ZAI MCP server
Testing resource read...
✓ Server status:
Status: online
Model: glm-4.7-flash
API Endpoint: https://api.z.ai/api/paas/v4
Tools: search_web, fetch_and_summarize, search_and_summarize
============================================================
✓ All tests passed!
============================================================
Development
Project Structure
zai-mcp-server/
├── src/
│ └── server.py # Main MCP server implementation
├── docs/
│ ├── ARCHITECTURE.md # Architecture documentation
│ └── API_REFERENCE.md # Detailed API reference
├── examples/
│ └── test_server.py # Test suite and examples
├── requirements.txt # Python dependencies
├── README.md # This file
└── .env.example # Environment variables template
Dependencies
aiohttp- Async HTTP clientbeautifulsoup4- HTML parsingopenai- OpenAI-compatible client for ZAI API
Troubleshooting
Common Issues
Server won't start
- Ensure Python 3.8+ is installed:
python --version - Check dependencies are installed:
pip install -r requirements.txt - Verify API key is set:
echo $ZAI_API_KEY
Search returns no results
- DuckDuckGo API may have rate limits
- Try with a different query
- Check internet connectivity
Summarization fails
- Verify API key is valid at https://z.ai/model-api
- Check API credits/balance
- Ensure URL is accessible
MCP client can't connect
- Verify server path in configuration is correct
- Ensure Python3 is in system PATH
- Check file permissions:
chmod +x src/server.py
Debug Mode
Enable debug logging by setting environment variable:
export ZAI_DEBUG=1
python src/server.py
License
MIT License - see LICENSE file for details
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Support
- Issues: Report bugs and feature requests on GitHub Issues
- ZAI API Documentation: https://docs.z.ai
- MCP Specification: https://modelcontextprotocol.io
Acknowledgments
- ZAI for providing the GLM-4.7-Flash API
- DuckDuckGo for the search API
- Model Context Protocol team for the specification
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.