Z3 Theorem Prover with Functional Programming

Z3 Theorem Prover with Functional Programming

An MCP server for the z3 theorem prover

javergar

Research & Data
Visit Server

README

Z3 Theorem Prover with Functional Programming

A Python implementation of abstactions over the Z3 Theorem Prover capabilities using functional programming principles, exposed through a Model Context Protocol (MCP) server.

Overview

This project demonstrates how to use the Z3 Theorem Prover with a functional programming approach to solve complex constraint satisfaction problems and analyze relationships between entities. It leverages the returns library for functional programming abstractions and exposes its capabilities through an MCP server.

Features

  • Constraint Satisfaction Problems: Solve complex problems with variables and constraints
  • Relationship Analysis: Analyze and infer relationships between entities
  • Functional Programming: Uses pure functions, immutable data structures, and monadic error handling
  • MCP Server: Exposes Z3 capabilities through a standardized interface

Project Structure

z3_mcp/
├── core/                  # Core implementation
│   ├── solver.py          # Constraint satisfaction problem solving
│   └── relationships.py   # Relationship analysis
├── models/                # Data models
│   ├── constraints.py     # Models for constraint problems
│   └── relationships.py   # Models for relationship analysis
├── server/                # MCP server
│   └── main.py            # Server implementation
└── examples/              # Example usage
    └── main.py            # Demonstration of capabilities

Technical Stack

  • Z3 Solver: Microsoft's theorem prover for constraint solving
  • Returns: Functional programming library for monadic operations and error handling
  • Pydantic: Data validation and serialization
  • FastMCP: Implementation of the Model Context Protocol

Installation

This project uses uv for dependency management.

# Clone the repository
git clone https://github.com/javergar/z3_mcp.git
cd z3_mcp

# Install dependencies
uv pip install -e .

# Install development dependencies (optional)
uv pip install -e ".[dev]"

Usage

Running Examples

The project includes several examples that demonstrate the capabilities of the Z3 solver:

# Run the examples
python -m z3_poc.examples.main

Examples include:

  • N-Queens Problem
  • Family Relationship Inference
  • Temporal Reasoning with Causal Relationships
  • Cryptarithmetic Puzzle (SEND + MORE = MONEY)

Running the MCP Server

Start the MCP server to expose Z3 capabilities through the Model Context Protocol:

# Run the server
python -m z3_poc.server.main

Setting up the MCP Server with Claude/Cline

To use the Z3 solver MCP server with Claude through the Cline extension in VSCode, you need to configure the settings.json file:

  1. Configuration: Add the following to the mcpServers object in the settings file:
"z3-solver": {
  "command": "uv",
  "args": [
    "--directory",
    "/path/to/your/z3_poc",
    "run",
    "z3_poc/server/main.py"
  ],
  "disabled": false,
  "autoApprove": [
    "simple_constraint_solver", 
    "simple_relationship_analyzer", 
    "solve_constraint_problem", 
    "analyze_relationships"
  ]
}
  1. Configuration Options:

    • command: The command to run (using uv for Python environment management)
    • args: Command arguments, including the path to your project and the server script
    • disabled: Set to false to enable the server
    • autoApprove: List of tools that can be used without explicit approval
  2. Restart: After updating the settings, restart VSCode or the Claude Desktop app for the changes to take effect.

Once configured, Claude will have access to the Z3 solver capabilities through the MCP server.

MCP Tools

The server provides the following tools:

solve_constraint_problem

Solves a constraint satisfaction problem with a full Problem model.

# Example input
{
  "problem": {
    "variables": [
      {"name": "x", "type": "integer"},
      {"name": "y", "type": "integer"}
    ],
    "constraints": [
      {"expression": "x + y == 10"},
      {"expression": "x >= 0"},
      {"expression": "y >= 0"}
    ],
    "description": "Find non-negative values for x and y that sum to 10"
  }
}

analyze_relationships

Analyzes relationships between entities with a full RelationshipQuery model.

# Example input
{
  "query": {
    "relationships": [
      {"person1": "Alice", "person2": "Bob", "relation": "sibling"},
      {"person1": "Bob", "person2": "Charlie", "relation": "sibling"}
    ],
    "query": "sibling(Alice, Charlie)"
  }
}

simple_constraint_solver

A simpler interface for solving constraint problems without requiring the full Problem model.

# Example input
{
  "variables": [
    {"name": "x", "type": "integer"},
    {"name": "y", "type": "integer"}
  ],
  "constraints": [
    "x + y == 10",
    "x <= 5",
    "y <= 5"
  ],
  "description": "Find values for x and y"
}

simple_relationship_analyzer

A simpler interface for analyzing relationships without requiring the full RelationshipQuery model.

# Example input
{
  "relationships": [
    {"person1": "Bob", "person2": "Hanna", "relation": "sibling"},
    {"person1": "Bob", "person2": "Claudia", "relation": "sibling"}
  ],
  "query": "sibling(Hanna, Claudia)"
}

Functional Programming Approach

This project demonstrates several functional programming principles:

  1. Immutable Data Structures: Using Pydantic models for immutable data representation
  2. Result Type: Using returns.result.Result for error handling without exceptions
  3. Maybe Type: Using returns.maybe.Maybe for handling nullable values
  4. Do Notation: Using generator expressions with Result.do() for sequential operations
  5. Pattern Matching: Using Python's match-case for handling different result types

Example of do notation in analyze_relationships:

expr = (
    RelationshipResult(...)
    for entities in create_entities(query.relationships)
    for relations in create_relations(query.relationships)
    for _ in add_relationship_assertions(solver, query.relationships, entities, relations)
    for query_expr in parse_query(query.query, entities, relations)
    for (result, explanation, is_satisfiable) in evaluate_query(solver, query_expr)
)

return Result.do(expr)

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python