YTPipe
Transforms YouTube videos into LLM-ready knowledge bases through transcription, semantic chunking, and vector embedding services. It provides 12 specialized MCP tools for video processing, semantic search, and SEO intelligence analysis.
README
<div align="center">

🎬 YTPipe - AI-Native YouTube Processing Pipeline
Transform YouTube videos into LLM-ready knowledge bases with a production-ready MCP backend.
Quick Start • Features • Documentation • MCP Tools
</div>
✨ Features
- 🤖 MCP Integration - 12 AI-callable tools for seamless agent integration
- 🎯 Smart Chunking - Semantic text chunking with timeline timestamps
- 🧠 Vector Embeddings - 384-dimensional embeddings for semantic search
- 🔍 Full-Text Search - Context-aware transcript search
- 📊 SEO Intelligence - AI-powered title, tag, and description optimization
- ⏱️ Timeline Analysis - Topic evolution and keyword density tracking
- 🏗️ Microservices - 11 independent, composable services
- 🔐 Type-Safe - Pydantic models throughout
- ⚡ Async-First - Non-blocking I/O operations
- 🗄️ Multi-Backend - ChromaDB, FAISS, Qdrant support
🚀 Quick Start
# Install
git clone https://github.com/leolech14/ytpipe.git
cd ytpipe
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
# Process a video
ytpipe "https://youtube.com/watch?v=dQw4w9WgXcQ"
Result: Metadata + Transcript + Semantic Chunks + Embeddings + Vector Storage
🎯 Usage Examples
MCP Server (AI Agents)
python -m ytpipe.mcp.server
Then from Claude Code:
"Process this video: https://youtube.com/watch?v=VIDEO_ID"
"Search video dQw4w9WgXcQ for 'machine learning'"
"Optimize SEO for video dQw4w9WgXcQ"
CLI (Humans)
# Basic
ytpipe "https://youtube.com/watch?v=VIDEO_ID"
# Advanced
ytpipe URL --backend faiss --whisper-model large --verbose
Python API (Developers)
from ytpipe.core.pipeline import Pipeline
pipeline = Pipeline(output_dir="./output")
result = await pipeline.process(url)
print(f"✅ {result.metadata.title}")
print(f" Chunks: {len(result.chunks)}")
print(f" Time: {result.processing_time:.1f}s")
📋 MCP Tools
Pipeline (4 tools)
ytpipe_process_video- Full pipelineytpipe_download- Download onlyytpipe_transcribe- Transcribe audioytpipe_embed- Generate embeddings
Query (4 tools)
ytpipe_search- Full-text searchytpipe_find_similar- Semantic searchytpipe_get_chunk- Get chunk by IDytpipe_get_metadata- Get video info
Analytics (4 tools)
ytpipe_seo_optimize- SEO recommendationsytpipe_quality_report- Quality metricsytpipe_topic_timeline- Topic evolutionytpipe_benchmark- Performance analysis
🏗️ Architecture
MCP Server (12 tools) → Pipeline Orchestrator → 11 Services → Pydantic Models
Services:
- Extractors (2): Download, Transcriber
- Processors (4): Chunker, Embedder, VectorStore, Docling
- Intelligence (4): Search, SEO, Timeline, Analyzer
- Exporters (1): Dashboard
8 Processing Phases:
- Download → 2. Transcription → 3. Chunking → 4. Embeddings →
- Export → 6. Dashboard → 7. Docling → 8. Vector Storage
📊 Performance
| Metric | Value |
|---|---|
| Processing Speed | 4-13x real-time |
| Memory Usage | <2GB peak |
| Chunk Quality | 85%+ high quality |
| Embedding Dimension | 384 |
🔧 Requirements
- Python 3.8+
- FFmpeg (for audio extraction)
- 4GB+ RAM recommended
- GPU optional (CUDA for acceleration)
📖 Documentation
🤝 Contributing
Contributions welcome! Please read CONTRIBUTING.md first.
📝 License
MIT License - see LICENSE for details.
🙏 Credits
Built with:
- FastMCP - MCP server framework
- OpenAI Whisper - Speech-to-text
- sentence-transformers - Text embeddings
- Model Context Protocol - AI tool standard
📧 Contact
Leonardo Lech
- Email: leonardo.lech@gmail.com
- GitHub: @leolech14
<div align="center">
⭐ Star this repo if you find it useful!
Transform YouTube → Knowledge Base in seconds
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.