YtMCP
A Model Context Protocol server providing comprehensive read-only access to YouTube data, including video search, transcripts, and channel forensics. It features 16 specialized tools designed for content analysis and metadata retrieval in LLM applications.
README
YtMCP - YouTube Model Context Protocol Server
YtMCP is a production-grade Model Context Protocol (MCP) server providing comprehensive, read-only access to YouTube data through 16 specialized tools. Designed for both local development (STDIO) and cloud deployment (HTTPS on Render), it combines multiple battle-tested libraries to deliver robust YouTube intelligence for LLM applications.
š Table of Contents
- Features
- Quick Start
- Tool Categories
- Architecture
- Configuration
- API Reference
- Development
- Deployment Guide
- Security & Compliance
- Troubleshooting
- Contributing
- License
⨠Features
š Category A: Core Discovery (5 Tools)
search_videos- Basic keyword search with customizable limitssearch_filtered- Advanced search with filters (upload date, duration, sort)get_trending_videos- Fetch current trending videosfind_channels- Search for channels by name or topicfind_playlists- Discover playlists by keyword
š„ Category B: Video Intelligence (5 Tools)
get_transcript- Extract time-synced transcripts/subtitles (CRITICAL for content analysis)get_video_metadata- Comprehensive video data (views, tags, description, likes, duration)get_video_chapters- Extract video chapters/key momentsget_thumbnail- High-resolution thumbnail URLs (all qualities)get_comments- Fetch top comments (rate-limited for safety)
š Category C: Channel & Playlist Forensics (5 Tools)
get_channel_videos- List channel videos with sorting (newest, oldest, popular)get_channel_shorts- List YouTube Shorts from a channelget_channel_streams- List live streams (past and present)get_playlist_items- Flatten playlist contentsget_channel_about- Channel description and statistics
š ļø Category D: Utilities (1 Tool)
get_audio_stream_url- Get direct audio stream URLs
š Quick Start
Local Development (STDIO)
Prerequisites:
- Python 3.13+
- UV package manager (recommended) or pip
Installation:
# Clone the repository
git clone https://github.com/utkarshchaudhary009/ytmcp.git
cd ytmcp
# Install with UV (recommended)
uv sync
# OR install with pip
pip install -e .
Run the server:
# Using UV
uv run ytmcp
# OR using pip
ytmcp
The server will start in STDIO mode, ready to accept MCP client connections.
Production Deployment (Render)
One-Click Deploy:
Manual Deployment:
-
Fork this repository
-
Create a new Web Service on Render:
- Go to Render Dashboard
- Click "New +" ā "Web Service"
- Connect your GitHub repository
-
Configure the service:
Name: ytmcp Environment: Python 3 Build Command: pip install -e . Start Command: ytmcp --transport streamable-http --host 0.0.0.0 --port $PORT -
Set environment variables (optional):
FASTMCP_LOG_LEVEL=INFO -
Deploy - Render will automatically deploy your MCP server with HTTPS
Your server will be available at: https://ytmcp-<random>.onrender.com
šļø Architecture
ytmcp/
āāā src/
ā āāā ytmcp/
ā āāā __init__.py
ā āāā server.py # Main FastMCP server with health check
ā āāā middleware/
ā ā āāā __init__.py
ā ā āāā rate_limiter.py # Global rate limiting (0.75s delay)
ā āāā tools/
ā āāā __init__.py
ā āāā search.py # Category A: Search tools
ā āāā video.py # Category B: Video intelligence
ā āāā channel.py # Category C: Channel forensics
ā āāā utils.py # Category D: Utilities
āāā examples/ # MCP client configurations
āāā research/ # Library research & feasibility docs
āāā render.yaml # Render deployment config
āāā Procfile # Process definition
āāā runtime.txt # Python version specification
āāā pyproject.toml # Project metadata & dependencies
āāā README.md
š§ Design Principles
- Rate Limiting First - Global 0.75s delay prevents IP bans
- Library Specialization:
scrapetubeā Fast channel/playlist listingyoutube-search-pythonā Search & filteringyt-dlpā Comprehensive metadata extractionyoutube-transcript-apiā Transcript fetching
- LLM-Optimized Output - All responses in Markdown
- Dual-Mode Operation - STDIO for local, HTTPS for production
- Health Monitoring -
/healthendpoint for load balancers
āļø Configuration
MCP Clients
Gemini CLI (.gemini/mcp_config.json)
{
"mcpServers": {
"ytmcp-local": {
"command": "uv",
"args": ["run", "--directory", "/path/to/ytmcp", "ytmcp"],
"description": "YouTube MCP (Local)"
},
"ytmcp-prod": {
"url": "https://your-ytmcp.onrender.com/mcp",
"description": "YouTube MCP (Production)"
}
}
}
Claude Desktop (~/Library/Application Support/Claude/claude_desktop_config.json)
{
"mcpServers": {
"ytmcp": {
"command": "uv",
"args": ["--directory", "/path/to/ytmcp", "run", "ytmcp"]
}
}
}
Cursor (.cursor/mcp.json)
{
"mcpServers": {
"ytmcp": {
"command": "uv",
"args": ["--directory", "/path/to/ytmcp", "run", "ytmcp"]
}
}
}
VS Code Continue (~/.continue/config.json)
{
"mcpServers": {
"ytmcp": {
"command": "uv",
"args": ["run", "--directory", "/path/to/ytmcp", "ytmcp"]
}
}
}
Environment Variables
| Variable | Default | Description |
|---|---|---|
FASTMCP_LOG_LEVEL |
INFO |
Logging level (DEBUG, INFO, WARNING, ERROR) |
FASTMCP_HOST |
127.0.0.1 |
Host to bind (HTTP transports) |
FASTMCP_PORT |
8000 |
Port to bind (HTTP transports) |
PORT |
- | Render auto-assigns this (production) |
š API Reference
Example Tool Calls
Search for Videos
search_videos_tool(
query="python tutorial",
limit=10
)
Returns: Markdown-formatted list with titles, channels, views, URLs
Get Video Transcript
get_transcript_tool(
video_id="dQw4w9WgXcQ", # Or full URL
languages="en,de" # Fallback languages
)
Returns: Time-synced transcript with [MM:SS] timestamps
Analyze Channel
get_channel_videos_tool(
channel_id="@fireship", # Supports @handle, ID, or URL
sort_by="popular",
limit=20
)
Returns: Sorted video list with metadata
Extract Metadata
get_video_metadata_tool(
video_id="https://youtube.com/watch?v=dQw4w9WgXcQ"
)
Returns: Comprehensive metadata (views, likes, description, tags, etc.)
š ļø Development
Setup Development Environment
# Install with dev dependencies
uv sync --dev
# Run tests
uv run pytest
# Type checking
uv run mypy src/
# Linting
uv run ruff check src/
Running Different Transports
# STDIO (for MCP clients)
uv run ytmcp
# SSE (for web clients)
uv run ytmcp --transport sse --port 8000
# StreamableHTTP (for production)
uv run ytmcp --transport streamable-http --host 0.0.0.0 --port 8080
Code Structure
Each tool follows this pattern:
from ..middleware.rate_limiter import rate_limiter
@rate_limiter # Automatic rate limiting
async def tool_name(param: str) -> str:
"""Tool description."""
# 1. Extract/validate IDs
# 2. Define library options
# 3. Fetch data in thread pool
# 4. Format as Markdown
# 5. Return LLM-optimized output
š¢ Deployment Guide
Render (Recommended)
Advantages:
- Free tier with 750 hours/month
- Auto-SSL (HTTPS)
- Auto-restart on crashes
- GitHub integration for auto-deploy
Steps:
- Push code to GitHub
- Connect Render to your repo
- Use
render.yamlconfiguration (included) - Deploy
Health Check: https://your-app.onrender.com/health
MCP Endpoint: https://your-app.onrender.com/mcp
Heroku
# Login to Heroku
heroku login
# Create app
heroku create ytmcp
# Deploy
git push heroku main
# Set environment
heroku config:set FASTMCP_LOG_LEVEL=INFO
Railway
- Connect GitHub repo
- Add environment variables
- Deploy with Procfile
Docker (Self-Hosted)
FROM python:3.13-slim
WORKDIR /app
COPY . .
RUN pip install -e .
EXPOSE 8080
CMD ["ytmcp", "--transport", "streamable-http", "--host", "0.0.0.0", "--port", "8080"]
docker build -t ytmcp .
docker run -p 8080:8080 ytmcp
š Security & Compliance
- Read-Only: No write operations to YouTube
- No API Keys: Uses scraping libraries (check YouTube ToS for commercial use)
- Privacy: No user authentication or tracking
- Rate Limiting: Prevents abuse and IP bans
- Transport Security: HTTPS in production, SSH for STDIO
ā ļø YouTube Terms of Service: This server uses scraping libraries that bypass official YouTube API quotas. Review YouTube's ToS before deploying for commercial purposes.
š Troubleshooting
Server Won't Start
Check Python version:
python --version # Should be 3.13+
Reinstall dependencies:
uv sync --reinstall
Rate Limiting Too Aggressive
Adjust in src/ytmcp/middleware/rate_limiter.py:
rate_limiter = RateLimiter(delay_seconds=0.5) # Faster (risky)
Render Deployment Fails
Check build logs:
- Ensure Python 3.13 is available
- Verify
runtime.txtspecifiespython-3.13
Common fix:
buildCommand: pip install --upgrade pip && pip install -e .
MCP Client Can't Connect
Local (STDIO):
- Ensure server is running:
uv run ytmcp - Check client config paths are absolute
- Restart MCP client
Production (HTTPS):
- Verify server health:
curl https://your-app.onrender.com/health - Check MCP endpoint:
https://your-app.onrender.com/mcp - Ensure HTTPS (not HTTP)
š¤ Contributing
Contributions welcome! Please:
- Review
/researchfor library capabilities - Follow existing tool patterns
- Maintain rate limiting
- Format outputs in Markdown
- Update documentation
Development Workflow:
# Fork and clone
git clone https://github.com/utkarshchaudhary009/ytmcp.git
# Create feature branch
git checkout -b feature/new-tool
# Make changes and test
uv run ytmcp
# Submit PR
š License
MIT License - See LICENSE file
š Acknowledgments
Built with these excellent libraries:
- yt-dlp - Video metadata extraction
- scrapetube - Channel scraping
- youtube-search-python - Search
- youtube-transcript-api - Transcripts
- MCP Python SDK - Protocol foundation
š Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Documentation: See
/researchfor design decisions
<div align="center">
Built with ā¤ļø for the LLM ecosystem
</div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.