YT-NINJA
Enables AI-powered YouTube video analysis including transcript management, video summaries, chapter generation, keyword extraction, and playback control. Supports searching videos, retrieving channel/playlist information, and translating transcripts using Google Gemini AI.
README
YT-NINJA š„·
A comprehensive YouTube MCP (Model Context Protocol) server that provides AI-powered video analysis, playback control, transcript management, and advanced content processing capabilities.
Features
š¬ Video Playback
- Play videos in browser or VLC player
- Audio-only playback with ffplay
- Video segment playback with timestamp control
- Active playback session management
š Data Retrieval
- Get detailed video information (title, views, likes, duration, etc.)
- Fetch playlist details with all videos
- Retrieve channel information and statistics
- Search YouTube videos and music
- Download video thumbnails in multiple qualities
š Transcript Management
- Get official video transcripts
- AI-powered transcript generation (when official unavailable)
- Translate transcripts to any language
- Format transcripts with or without timestamps
š¤ AI-Powered Analysis
- Generate video summaries with key points
- Auto-generate chapter markers
- Extract relevant keywords with relevance scores
- Detect topics and categories
- Create AI-powered video highlights
Installation
Prerequisites
- Node.js >= 18.0.0
- npm >= 9.0.0
- Google Gemini API key (required for AI features)
- Optional: VLC Media Player (for VLC playback)
- Optional: FFmpeg (for audio playback and processing)
Setup
- Clone the repository:
git clone <repository-url>
cd yt-ninja
- Install dependencies:
npm install
- Configure environment variables:
cp .env.example .env
Edit .env and add your configuration:
# Required
GEMINI_API_KEY=your-google-gemini-api-key
# Optional
DOWNLOAD_DIR=./downloads
TEMP_DIR=./temp
MAX_CONCURRENT_DOWNLOADS=3
LOG_LEVEL=info
- Build the project:
npm run build
Configuration
Environment Variables
| Variable | Required | Default | Description |
|---|---|---|---|
GEMINI_API_KEY |
Yes | - | Google Generative AI API key for AI features |
DOWNLOAD_DIR |
No | ./downloads |
Directory for downloaded files |
TEMP_DIR |
No | ./temp |
Temporary files directory |
MAX_CONCURRENT_DOWNLOADS |
No | 3 |
Maximum concurrent downloads |
LOG_LEVEL |
No | info |
Logging level (error, warn, info, debug) |
Getting a Gemini API Key
- Visit Google AI Studio
- Sign in with your Google account
- Click "Create API Key"
- Copy the key and add it to your
.envfile
MCP Configuration
Add to your MCP settings file (mcp.json):
{
"mcpServers": {
"yt-ninja": {
"command": "node",
"args": ["/path/to/yt-ninja/dist/index.js"],
"env": {
"GEMINI_API_KEY": "your-api-key-here"
},
"disabled": false
}
}
}
Available Tools
Playback Tools
play_youtube_video
Play a YouTube video in browser or VLC player.
Parameters:
url(string, required): YouTube video URLplayer(string, optional): Player type -browserorvlc(default:browser)
Example:
{
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"player": "browser"
}
Data Retrieval Tools
get_video_info
Get comprehensive information about a YouTube video.
Parameters:
url(string, required): YouTube video URL
Returns: Video title, description, channel, views, likes, duration, tags, thumbnail, etc.
get_playlist_info
Get information about a YouTube playlist.
Parameters:
url(string, required): YouTube playlist URL
Returns: Playlist title, description, video count, total duration, list of videos
get_channel_info
Get information about a YouTube channel.
Parameters:
channelId(string, required): Channel ID or URL
Returns: Channel name, description, subscriber count, total views, video count
search_youtube
Search for videos on YouTube.
Parameters:
query(string, required): Search querymaxResults(number, optional): Maximum results (1-50, default: 10)
Returns: Array of search results with video details
search_music
Search specifically for music on YouTube.
Parameters:
query(string, required): Music search querymaxResults(number, optional): Maximum results (1-50, default: 10)
Returns: Array of music search results
download_thumbnail
Download a video thumbnail image.
Parameters:
url(string, required): YouTube video URLoutputPath(string, optional): Output file pathquality(string, optional): Quality -maxres,high,medium,default(default:maxres)
Transcript Tools
get_transcript
Get the transcript/subtitles of a video.
Parameters:
url(string, required): YouTube video URLlanguage(string, optional): Language code (e.g., 'en', 'es', 'fr')
Returns: Transcript text, language, timestamps, source type
translate_transcript
Translate a video transcript to another language.
Parameters:
url(string, required): YouTube video URLtargetLanguage(string, required): Target language code
Returns: Translated transcript with original timestamps
AI Analysis Tools
summarize_video
Generate an AI-powered summary of a video.
Parameters:
url(string, required): YouTube video URLmaxWords(number, optional): Maximum words in summary (default: 200)
Returns: Summary text, key points, word count
generate_chapters
Auto-generate chapter markers for a video.
Parameters:
url(string, required): YouTube video URL
Returns: Array of chapters with timestamps, titles, and descriptions
get_keywords
Extract relevant keywords from a video.
Parameters:
url(string, required): YouTube video URLcount(number, optional): Number of keywords (default: 15)
Returns: Array of keywords with relevance scores and frequency
detect_topics
Detect topics and categories in a video.
Parameters:
url(string, required): YouTube video URL
Returns: Array of topics with confidence scores and categories
generate_video_highlights
Generate AI-powered video highlights.
Parameters:
url(string, required): YouTube video URLcount(number, optional): Number of highlights (5-10, default: 7)
Returns: Array of highlight moments with timestamps, descriptions, reasons, and scores
Usage Examples
Using with\
AI
Once configured as an MCP server, you can use YT-NINJA through natural language:
"Get information about this video: https://www.youtube.com/watch?v=dQw4w9WgXcQ"
"Summarize this YouTube video in 150 words"
"Generate chapters for this tutorial video"
"Extract the top 20 keywords from this video"
"Get the transcript and translate it to Spanish"
Programmatic Usage
import { dataManager, aiAnalyzer, transcriptManager } from 'yt-ninja';
// Get video info
const videoInfo = await dataManager.getVideoInfo('https://youtube.com/watch?v=...');
// Generate summary
const summary = await aiAnalyzer.summarizeVideo('https://youtube.com/watch?v=...', 200);
// Get transcript
const transcript = await transcriptManager.getTranscript('https://youtube.com/watch?v=...');
Development
Scripts
npm run dev- Run in development mode with hot reloadnpm run build- Build for productionnpm start- Start the production servernpm run lint- Lint codenpm run format- Format code with Prettiernpm run type-check- Check TypeScript types
Project Structure
yt-ninja/
āāā src/
ā āāā index.ts # Entry point
ā āāā server.ts # MCP server setup
ā āāā integrations/ # External service integrations
ā ā āāā youtube.ts # YouTube API client
ā ā āāā genai.ts # Google GenAI client
ā ā āāā ffmpeg.ts # FFmpeg integration
ā ā āāā process.ts # Process management
ā āāā managers/ # Feature managers
ā ā āāā DataManager.ts # Data retrieval
ā ā āāā PlaybackManager.ts # Playback control
ā ā āāā TranscriptManager.ts # Transcript operations
ā ā āāā AIAnalyzer.ts # AI analysis
ā ā āāā MediaProcessor.ts # Media processing
ā ā āāā AdvancedFeaturesManager.ts # Advanced features
ā āāā types/ # TypeScript type definitions
ā āāā utils/ # Utility functions
āāā dist/ # Compiled output
āāā downloads/ # Downloaded files
āāā .env # Environment configuration
āāā package.json
Error Handling
YT-NINJA provides detailed error messages with suggestions:
{
"success": false,
"error": {
"code": "INVALID_URL",
"message": "Invalid YouTube video URL",
"details": { "url": "..." },
"suggestions": [
"Provide a valid YouTube video URL",
"Example: https://www.youtube.com/watch?v=VIDEO_ID"
]
}
}
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.