YT-NINJA

YT-NINJA

Enables AI-powered YouTube video analysis including transcript management, video summaries, chapter generation, keyword extraction, and playback control. Supports searching videos, retrieving channel/playlist information, and translating transcripts using Google Gemini AI.

Category
Visit Server

README

YT-NINJA 🄷

A comprehensive YouTube MCP (Model Context Protocol) server that provides AI-powered video analysis, playback control, transcript management, and advanced content processing capabilities.

Features

šŸŽ¬ Video Playback

  • Play videos in browser or VLC player
  • Audio-only playback with ffplay
  • Video segment playback with timestamp control
  • Active playback session management

šŸ“Š Data Retrieval

  • Get detailed video information (title, views, likes, duration, etc.)
  • Fetch playlist details with all videos
  • Retrieve channel information and statistics
  • Search YouTube videos and music
  • Download video thumbnails in multiple qualities

šŸ“ Transcript Management

  • Get official video transcripts
  • AI-powered transcript generation (when official unavailable)
  • Translate transcripts to any language
  • Format transcripts with or without timestamps

šŸ¤– AI-Powered Analysis

  • Generate video summaries with key points
  • Auto-generate chapter markers
  • Extract relevant keywords with relevance scores
  • Detect topics and categories
  • Create AI-powered video highlights

Installation

Prerequisites

  • Node.js >= 18.0.0
  • npm >= 9.0.0
  • Google Gemini API key (required for AI features)
  • Optional: VLC Media Player (for VLC playback)
  • Optional: FFmpeg (for audio playback and processing)

Setup

  1. Clone the repository:
git clone <repository-url>
cd yt-ninja
  1. Install dependencies:
npm install
  1. Configure environment variables:
cp .env.example .env

Edit .env and add your configuration:

# Required
GEMINI_API_KEY=your-google-gemini-api-key

# Optional
DOWNLOAD_DIR=./downloads
TEMP_DIR=./temp
MAX_CONCURRENT_DOWNLOADS=3
LOG_LEVEL=info
  1. Build the project:
npm run build

Configuration

Environment Variables

Variable Required Default Description
GEMINI_API_KEY Yes - Google Generative AI API key for AI features
DOWNLOAD_DIR No ./downloads Directory for downloaded files
TEMP_DIR No ./temp Temporary files directory
MAX_CONCURRENT_DOWNLOADS No 3 Maximum concurrent downloads
LOG_LEVEL No info Logging level (error, warn, info, debug)

Getting a Gemini API Key

  1. Visit Google AI Studio
  2. Sign in with your Google account
  3. Click "Create API Key"
  4. Copy the key and add it to your .env file

MCP Configuration

Add to your MCP settings file (mcp.json):

{
  "mcpServers": {
    "yt-ninja": {
      "command": "node",
      "args": ["/path/to/yt-ninja/dist/index.js"],
      "env": {
        "GEMINI_API_KEY": "your-api-key-here"
      },
      "disabled": false
    }
  }
}

Available Tools

Playback Tools

play_youtube_video

Play a YouTube video in browser or VLC player.

Parameters:

  • url (string, required): YouTube video URL
  • player (string, optional): Player type - browser or vlc (default: browser)

Example:

{
  "url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
  "player": "browser"
}

Data Retrieval Tools

get_video_info

Get comprehensive information about a YouTube video.

Parameters:

  • url (string, required): YouTube video URL

Returns: Video title, description, channel, views, likes, duration, tags, thumbnail, etc.

get_playlist_info

Get information about a YouTube playlist.

Parameters:

  • url (string, required): YouTube playlist URL

Returns: Playlist title, description, video count, total duration, list of videos

get_channel_info

Get information about a YouTube channel.

Parameters:

  • channelId (string, required): Channel ID or URL

Returns: Channel name, description, subscriber count, total views, video count

search_youtube

Search for videos on YouTube.

Parameters:

  • query (string, required): Search query
  • maxResults (number, optional): Maximum results (1-50, default: 10)

Returns: Array of search results with video details

search_music

Search specifically for music on YouTube.

Parameters:

  • query (string, required): Music search query
  • maxResults (number, optional): Maximum results (1-50, default: 10)

Returns: Array of music search results

download_thumbnail

Download a video thumbnail image.

Parameters:

  • url (string, required): YouTube video URL
  • outputPath (string, optional): Output file path
  • quality (string, optional): Quality - maxres, high, medium, default (default: maxres)

Transcript Tools

get_transcript

Get the transcript/subtitles of a video.

Parameters:

  • url (string, required): YouTube video URL
  • language (string, optional): Language code (e.g., 'en', 'es', 'fr')

Returns: Transcript text, language, timestamps, source type

translate_transcript

Translate a video transcript to another language.

Parameters:

  • url (string, required): YouTube video URL
  • targetLanguage (string, required): Target language code

Returns: Translated transcript with original timestamps

AI Analysis Tools

summarize_video

Generate an AI-powered summary of a video.

Parameters:

  • url (string, required): YouTube video URL
  • maxWords (number, optional): Maximum words in summary (default: 200)

Returns: Summary text, key points, word count

generate_chapters

Auto-generate chapter markers for a video.

Parameters:

  • url (string, required): YouTube video URL

Returns: Array of chapters with timestamps, titles, and descriptions

get_keywords

Extract relevant keywords from a video.

Parameters:

  • url (string, required): YouTube video URL
  • count (number, optional): Number of keywords (default: 15)

Returns: Array of keywords with relevance scores and frequency

detect_topics

Detect topics and categories in a video.

Parameters:

  • url (string, required): YouTube video URL

Returns: Array of topics with confidence scores and categories

generate_video_highlights

Generate AI-powered video highlights.

Parameters:

  • url (string, required): YouTube video URL
  • count (number, optional): Number of highlights (5-10, default: 7)

Returns: Array of highlight moments with timestamps, descriptions, reasons, and scores

Usage Examples

Using with\

AI

Once configured as an MCP server, you can use YT-NINJA through natural language:

"Get information about this video: https://www.youtube.com/watch?v=dQw4w9WgXcQ"

"Summarize this YouTube video in 150 words"

"Generate chapters for this tutorial video"

"Extract the top 20 keywords from this video"

"Get the transcript and translate it to Spanish"

Programmatic Usage

import { dataManager, aiAnalyzer, transcriptManager } from 'yt-ninja';

// Get video info
const videoInfo = await dataManager.getVideoInfo('https://youtube.com/watch?v=...');

// Generate summary
const summary = await aiAnalyzer.summarizeVideo('https://youtube.com/watch?v=...', 200);

// Get transcript
const transcript = await transcriptManager.getTranscript('https://youtube.com/watch?v=...');

Development

Scripts

  • npm run dev - Run in development mode with hot reload
  • npm run build - Build for production
  • npm start - Start the production server
  • npm run lint - Lint code
  • npm run format - Format code with Prettier
  • npm run type-check - Check TypeScript types

Project Structure

yt-ninja/
ā”œā”€ā”€ src/
│   ā”œā”€ā”€ index.ts              # Entry point
│   ā”œā”€ā”€ server.ts             # MCP server setup
│   ā”œā”€ā”€ integrations/         # External service integrations
│   │   ā”œā”€ā”€ youtube.ts        # YouTube API client
│   │   ā”œā”€ā”€ genai.ts          # Google GenAI client
│   │   ā”œā”€ā”€ ffmpeg.ts         # FFmpeg integration
│   │   └── process.ts        # Process management
│   ā”œā”€ā”€ managers/             # Feature managers
│   │   ā”œā”€ā”€ DataManager.ts    # Data retrieval
│   │   ā”œā”€ā”€ PlaybackManager.ts # Playback control
│   │   ā”œā”€ā”€ TranscriptManager.ts # Transcript operations
│   │   ā”œā”€ā”€ AIAnalyzer.ts     # AI analysis
│   │   ā”œā”€ā”€ MediaProcessor.ts # Media processing
│   │   └── AdvancedFeaturesManager.ts # Advanced features
│   ā”œā”€ā”€ types/                # TypeScript type definitions
│   └── utils/                # Utility functions
ā”œā”€ā”€ dist/                     # Compiled output
ā”œā”€ā”€ downloads/                # Downloaded files
ā”œā”€ā”€ .env                      # Environment configuration
└── package.json

Error Handling

YT-NINJA provides detailed error messages with suggestions:

{
  "success": false,
  "error": {
    "code": "INVALID_URL",
    "message": "Invalid YouTube video URL",
    "details": { "url": "..." },
    "suggestions": [
      "Provide a valid YouTube video URL",
      "Example: https://www.youtube.com/watch?v=VIDEO_ID"
    ]
  }
}

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured