YouTube Transcript MCP Server
Enables fetching, searching, and analyzing YouTube video transcripts in multiple languages using yt-dlp. Supports timestamp filtering, language detection, and transcript summaries with robust error handling for production use.
README
YouTube Transcript MCP Server
A production-ready Model Context Protocol (MCP) server that provides YouTube transcript fetching capabilities using yt-dlp CLI for reliable subtitle extraction. Bypasses YouTube's rate limiting through CLI-based implementation.
Status: Production Ready ✅
Implementation: Full CLI migration complete (September 2025)
- ✅ CLI-Based: Uses yt-dlp subprocess to avoid HTTP rate limiting
- ✅ Universal Compatibility: Time parameters work across all MCP clients
- ✅ Advanced Analytics: Enhanced transcript summary with content analysis
- ✅ Multi-Language: 100+ languages with auto-generated and manual transcripts
Features
- Fetch transcripts from YouTube videos with metadata and timestamps
- Time filtering - extract specific segments by start/end times
- Search functionality - find text within transcripts with context
- Advanced analytics - speaking pace, filler words, engagement metrics, top words
- Language detection - list available transcript languages
- Universal format support - handles both video IDs and full YouTube URLs
- Dual transport - STDIO and HTTP transport modes
- Docker support - containerized deployment with health checks
Installation
Quick Start
# Install dependencies
uv pip install -e .
# Run server (STDIO mode)
python src/server.py
# Run server (HTTP mode)
uvicorn src.server:app --host 0.0.0.0 --port 8080
Docker (Recommended)
# Build and run
docker build -t yttranscript-mcp .
docker run -d -p 8080:8080 yttranscript-mcp
# Or use docker-compose
docker-compose up -d yttranscript-mcp
# Health check
curl http://localhost:8080/health
Usage
Available Tools
- get_transcript - Fetch video transcripts with optional time filtering
- search_transcript - Search for specific text within transcripts
- get_transcript_summary - Advanced analytics and content insights
- get_available_languages - List available transcript languages
Testing Commands
# Discover tools
mcp tools .venv/bin/python src/server.py
# Basic transcript
mcp call get_transcript --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py
# Time-filtered transcript
mcp call get_transcript --params '{"video_id":"jNQXAC9IVRw", "start_time": 10, "end_time": 60}' .venv/bin/python src/server.py
# Search within transcript
mcp call search_transcript --params '{"video_id":"jNQXAC9IVRw", "query":"example"}' .venv/bin/python src/server.py
# Advanced analytics
mcp call get_transcript_summary --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py
# Available languages
mcp call get_available_languages --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py
MCP Client Configuration
HTTP Transport (Production)
{
"yttranscript": {
"command": "uvicorn",
"args": [
"src.server:app",
"--host", "0.0.0.0",
"--port", "8080"
],
"cwd": "/path/to/yttranscript_mcp"
}
}
STDIO Transport (Development)
{
"yttranscript": {
"command": "uv",
"args": [
"run",
"--directory", "/path/to/yttranscript_mcp",
"src/server.py"
]
}
}
Key Features
Universal Parameter Compatibility
Time filtering parameters accept multiple formats:
- Integers:
{"start_time": 10} - Floats:
{"start_time": 10.5} - Strings:
{"start_time": "10"} - Nulls:
{"start_time": null}or{"start_time": "null"}
Advanced Analytics
The get_transcript_summary tool provides:
- Speaking pace analysis (words per minute with descriptive labels)
- Filler word detection (um, uh, like, etc.) with percentages
- Content indicators (conversational, formal, high energy)
- Top frequent words (excluding stop words)
- Engagement metrics (questions, exclamations)
- Reading time estimates at multiple speeds
CLI Implementation Benefits
- No rate limiting - bypasses YouTube's HTTP restrictions
- Reliable extraction - uses yt-dlp's robust parsing
- Better error handling - clear error messages for various failure modes
- Format flexibility - handles VTT, JSON3, and other subtitle formats
Configuration
Environment Variables
YT_TRANSCRIPT_SERVER_PORT=8080 # Server port (default: 8080)
YT_TRANSCRIPT_SERVER_HOST=0.0.0.0 # Server host (default: 0.0.0.0)
YT_TRANSCRIPT_DEBUG=false # Debug mode
Docker Environment
# Production
docker run -e YT_TRANSCRIPT_SERVER_PORT=8080 yttranscript-mcp
# Development with auto-reload
docker-compose --profile dev up yttranscript-mcp-dev
Dependencies
- fastmcp>=0.9.0 - MCP server framework
- yt-dlp>=2025.8.11 - YouTube transcript extraction via CLI
- pydantic>=2.0.0 - Data validation and models
- uvicorn>=0.24.0 - ASGI server for HTTP transport
This project uses uv for package management.
Troubleshooting
- Tool not found: Verify
@mcp.tool()decorator in tool definitions - Validation errors: Video IDs must be 11 characters, time values must be non-negative
- Time filtering issues: Parameters accept multiple formats (int/float/string/null)
- Transport issues: Use
uvicornfor HTTP mode,python src/server.pyfor STDIO - No transcript available: Check with
get_available_languagesfirst
License
This project is open source and available under the MIT License.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.