YouTube Transcript MCP Server

YouTube Transcript MCP Server

Enables fetching, searching, and analyzing YouTube video transcripts in multiple languages using yt-dlp. Supports timestamp filtering, language detection, and transcript summaries with robust error handling for production use.

Category
Visit Server

README

YouTube Transcript MCP Server

A production-ready Model Context Protocol (MCP) server that provides YouTube transcript fetching capabilities using yt-dlp CLI for reliable subtitle extraction. Bypasses YouTube's rate limiting through CLI-based implementation.

Status: Production Ready ✅

Implementation: Full CLI migration complete (September 2025)

  • CLI-Based: Uses yt-dlp subprocess to avoid HTTP rate limiting
  • Universal Compatibility: Time parameters work across all MCP clients
  • Advanced Analytics: Enhanced transcript summary with content analysis
  • Multi-Language: 100+ languages with auto-generated and manual transcripts

Features

  • Fetch transcripts from YouTube videos with metadata and timestamps
  • Time filtering - extract specific segments by start/end times
  • Search functionality - find text within transcripts with context
  • Advanced analytics - speaking pace, filler words, engagement metrics, top words
  • Language detection - list available transcript languages
  • Universal format support - handles both video IDs and full YouTube URLs
  • Dual transport - STDIO and HTTP transport modes
  • Docker support - containerized deployment with health checks

Installation

Quick Start

# Install dependencies
uv pip install -e .

# Run server (STDIO mode)
python src/server.py

# Run server (HTTP mode)
uvicorn src.server:app --host 0.0.0.0 --port 8080

Docker (Recommended)

# Build and run
docker build -t yttranscript-mcp .
docker run -d -p 8080:8080 yttranscript-mcp

# Or use docker-compose
docker-compose up -d yttranscript-mcp

# Health check
curl http://localhost:8080/health

Usage

Available Tools

  1. get_transcript - Fetch video transcripts with optional time filtering
  2. search_transcript - Search for specific text within transcripts
  3. get_transcript_summary - Advanced analytics and content insights
  4. get_available_languages - List available transcript languages

Testing Commands

# Discover tools
mcp tools .venv/bin/python src/server.py

# Basic transcript
mcp call get_transcript --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py

# Time-filtered transcript
mcp call get_transcript --params '{"video_id":"jNQXAC9IVRw", "start_time": 10, "end_time": 60}' .venv/bin/python src/server.py

# Search within transcript
mcp call search_transcript --params '{"video_id":"jNQXAC9IVRw", "query":"example"}' .venv/bin/python src/server.py

# Advanced analytics
mcp call get_transcript_summary --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py

# Available languages
mcp call get_available_languages --params '{"video_id":"jNQXAC9IVRw"}' .venv/bin/python src/server.py

MCP Client Configuration

HTTP Transport (Production)

{
  "yttranscript": {
    "command": "uvicorn",
    "args": [
      "src.server:app",
      "--host", "0.0.0.0", 
      "--port", "8080"
    ],
    "cwd": "/path/to/yttranscript_mcp"
  }
}

STDIO Transport (Development)

{
  "yttranscript": {
    "command": "uv",
    "args": [
      "run",
      "--directory", "/path/to/yttranscript_mcp",
      "src/server.py"
    ]
  }
}

Key Features

Universal Parameter Compatibility

Time filtering parameters accept multiple formats:

  • Integers: {"start_time": 10}
  • Floats: {"start_time": 10.5}
  • Strings: {"start_time": "10"}
  • Nulls: {"start_time": null} or {"start_time": "null"}

Advanced Analytics

The get_transcript_summary tool provides:

  • Speaking pace analysis (words per minute with descriptive labels)
  • Filler word detection (um, uh, like, etc.) with percentages
  • Content indicators (conversational, formal, high energy)
  • Top frequent words (excluding stop words)
  • Engagement metrics (questions, exclamations)
  • Reading time estimates at multiple speeds

CLI Implementation Benefits

  • No rate limiting - bypasses YouTube's HTTP restrictions
  • Reliable extraction - uses yt-dlp's robust parsing
  • Better error handling - clear error messages for various failure modes
  • Format flexibility - handles VTT, JSON3, and other subtitle formats

Configuration

Environment Variables

YT_TRANSCRIPT_SERVER_PORT=8080    # Server port (default: 8080)
YT_TRANSCRIPT_SERVER_HOST=0.0.0.0 # Server host (default: 0.0.0.0)
YT_TRANSCRIPT_DEBUG=false         # Debug mode

Docker Environment

# Production
docker run -e YT_TRANSCRIPT_SERVER_PORT=8080 yttranscript-mcp

# Development with auto-reload  
docker-compose --profile dev up yttranscript-mcp-dev

Dependencies

  • fastmcp>=0.9.0 - MCP server framework
  • yt-dlp>=2025.8.11 - YouTube transcript extraction via CLI
  • pydantic>=2.0.0 - Data validation and models
  • uvicorn>=0.24.0 - ASGI server for HTTP transport

This project uses uv for package management.

Troubleshooting

  • Tool not found: Verify @mcp.tool() decorator in tool definitions
  • Validation errors: Video IDs must be 11 characters, time values must be non-negative
  • Time filtering issues: Parameters accept multiple formats (int/float/string/null)
  • Transport issues: Use uvicorn for HTTP mode, python src/server.py for STDIO
  • No transcript available: Check with get_available_languages first

License

This project is open source and available under the MIT License.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured