YouTube MCP Server

YouTube MCP Server

Enables AI agents to extract YouTube video metadata and generate high-quality multilingual transcriptions with voice activity detection, supporting 99 languages with translation capabilities and intelligent caching.

Category
Visit Server

README

YouTube MCP Server

A powerful Model Context Protocol (MCP) server for YouTube video transcription and metadata extraction. This server provides advanced tools for AI agents to retrieve video metadata and generate high-quality transcriptions with native language support.

🌟 Features

  • Metadata Extraction: Retrieve comprehensive video details (title, description, views, duration, etc.) without downloading the video.
  • Smart Transcription:
    • In-Memory Processing: fast, efficient, and disk-I/O free pipeline.
    • VAD (Voice Activity Detection): uses Silero VAD for precise segmentation.
    • Multilingual Support: supports 99 languages.
    • Translation: Transcribe to any supported language.
  • Caching: Intelligent file-based caching to avoid redundant processing.
  • Optimized Performance:
    • Uses yt-dlp for robust extraction.
    • Hardware acceleration (MPS/CUDA) for Whisper inference.
    • Parallel processing for transcription segments.

🛠️ Prerequisites

  • Python 3.10+
  • ffmpeg: Required for audio processing.
    • Mac: brew install ffmpeg
    • Linux: sudo apt install ffmpeg
    • Windows: Download and add to PATH.

📦 Installation

  1. Clone the repository:

    git clone https://github.com/mourad-ghafiri/youtube-mcp-server
    cd youtube-mcp-server
    
  2. Install dependencies: Using uv (recommended):

    uv sync
    

⚙️ Configuration

The server configuration is located in src/youtube_mcp_server/config.py. You can adjust the following parameters:

Directories

  • TRANSCRIPTIONS_DIR: Directory where transcription JSON files are cached (default: "transcriptions").

Models

  • WHISPER_MODEL_NAME: OpenAI Whisper model to use. Options: "tiny", "base", "small", "medium", "large", "turbo". (default: "tiny").

    Note: Larger models require more RAM and a GPU (CUDA/MPS).

  • SILERO_REPO / SILERO_MODEL: VAD model repository and ID.

Audio Processing

  • SAMPLING_RATE: Audio sampling rate for Whisper/VAD (default: 16000 Hz).
  • SEGMENT_PADDING_MS: Padding added to each audio segment to avoid cutting off words (default: 200 ms).

Concurrency

  • MAX_WORKERS: Number of parallel threads for transcribing audio segments (default: 4). Increasing this speeds up transcription but uses more CPU/Memory.

🚀 Usage

1. Start the Server

uv run main.py

The server runs on SSE (Server-Sent Events) transport at http://127.0.0.1:8000/sse.

2. Configure MCP Client

Add the server configuration to your MCP client:

{
  "mcpServers": {
    "youtube": {
      "url": "http://127.0.0.1:8000/sse"
    }
  }
}

🛠️ Tools Reference

get_video_info

Retrieves metadata for a given YouTube video.

  • Input: url (string)
  • Output: JSON object with title, views, description, thumbnails, etc.
    {
      "id": "VIDEO_ID",
      "title": "Video Title",
      "description": "Video description...",
      "view_count": 1000000,
      "duration": 212,
      "uploader": "Channel Name",
      "upload_date": "20091025",
      "thumbnail": "https://i.ytimg.com/...",
      "tags": ["tag1", "tag2"],
      "categories": ["Music"]
    }
    

transcribe_video

Transcribes a video with optional translation.

  • Inputs:
    • url (string): Video URL.
    • language (string, default="auto"):
      • "auto": Transcribe in detected language.
      • "en": Translate to English.
      • "fr", "es", etc.: Transcribe in specific language.
  • Output: JSON with segments and metadata.
    {
      "id": "VIDEO_ID",
      "title": "Video Title",
      "duration": 212,
      "transcription": [
        {
          "from": "00:00:00",
          "to": "00:00:05",
          "transcription": "First segment text..."
        },
        {
          "from": "00:00:05",
          "to": "00:00:10",
          "transcription": "Second segment text..."
        }
      ]
    }
    

🏗️ Technical Architecture

  • Services: DownloadService, VADService (Silero), WhisperService (OpenAI), CacheService.
  • In-Memory Pipeline: Audio is downloaded -> loaded to RAM -> segmented by VAD -> transcribed by Whisper -> Cached.
  • Concurrency: Parallel segment transcription.

🌍 Appendix: Supported Languages

Country (Primary/Region) Language Code
South Africa Afrikaans af
Ethiopia Amharic am
Arab World Arabic ar
India Assamese as
Azerbaijan Azerbaijani az
Russia Bashkir ba
Belarus Belarusian be
Bulgaria Bulgarian bg
Bangladesh Bengali bn
Tibet Tibetan bo
France (Brittany) Breton br
Bosnia and Herzegovina Bosnian bs
Spain (Catalonia) Catalan ca
Czech Republic Czech cs
Wales Welsh cy
Denmark Danish da
Germany German de
Greece Greek el
USA / UK English en
Spain Spanish es
Estonia Estonian et
Spain (Basque) Basque eu
Iran Persian fa
Finland Finnish fi
Faroe Islands Faroese fo
France French fr
Spain (Galicia) Galician gl
India Gujarati gu
Nigeria Hausa ha
Hawaii Hawaiian haw
Israel Hebrew he
India Hindi hi
Croatia Croatian hr
Haiti Haitian Creole ht
Hungary Hungarian hu
Armenia Armenian hy
Indonesia Indonesian id
Iceland Icelandic is
Italy Italian it
Japan Japanese ja
Indonesia (Java) Javanese jw
Georgia Georgian ka
Kazakhstan Kazakh kk
Cambodia Khmer km
India Kannada kn
South Korea Korean ko
Ancient Rome Latin la
Luxembourg Luxembourgish lb
Congo Lingala ln
Laos Lao lo
Lithuania Lithuanian lt
Latvia Latvian lv
Madagascar Malagasy mg
New Zealand Maori mi
North Macedonia Macedonian mk
India Malayalam ml
Mongolia Mongolian mn
India Marathi mr
Malaysia Malay ms
Malta Maltese mt
Myanmar Myanmar my
Nepal Nepali ne
Netherlands Dutch nl
Norway Nynorsk nn
Norway Norwegian no
France (Occitania) Occitan oc
India (Punjab) Punjabi pa
Poland Polish pl
Afghanistan Pashto ps
Portugal / Brazil Portuguese pt
Romania Romanian ro
Russia Russian ru
India Sanskrit sa
Pakistan Sindhi sd
Sri Lanka Sinhala si
Slovakia Slovak sk
Slovenia Slovenian sl
Zimbabwe Shona sn
Somalia Somali so
Albania Albanian sq
Serbia Serbian sr
Indonesia Sundanese su
Sweden Swedish sv
East Africa Swahili sw
India Tamil ta
India Telugu te
Tajikistan Tajik tg
Thailand Thai th
Turkmenistan Turkmen tk
Philippines Tagalog tl
Turkey Turkish tr
Russia (Tatarstan) Tatar tt
Ukraine Ukrainian uk
Pakistan Urdu ur
Uzbekistan Uzbek uz
Vietnam Vietnamese vi
Ashkenazi Jewish Yiddish yi
Nigeria Yoruba yo
China (Guangdong) Cantonese yue
China Chinese zh

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the project
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

Distributed under the MIT License. See LICENSE for more information.


<p align="center">Built with love ❤️</p>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured