
YouTube MCP
A Model Context Protocol server that analyzes YouTube videos, enabling users to extract transcripts, generate summaries, and query video content using Gemini AI.
README
YouTube MCP
A Model Context Protocol (MCP) server for YouTube video analysis, providing tools to get transcripts, summarize content, and query videos using Gemini AI.
Features
- 📝 Transcript Extraction: Get detailed transcripts from YouTube videos
- 📊 Video Summarization: Generate concise summaries using Gemini AI
- ❓ Natural Language Queries: Ask questions about video content
- 🔍 YouTube Search: Find videos matching specific queries
- 💬 Comment Analysis: Retrieve and analyze video comments
Requirements
- Python 3.9+
- Google Gemini API key
- YouTube Data API key
Running Locally
Installing via Smithery
To install youtube-mcp for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @Prajwal-ak-0/youtube-mcp --client claude
Option 1: Install directly from smithery
Option 2: Local setup
-
Clone the repository:
git clone https://github.com/Prajwal-ak-0/youtube-mcp cd youtube-mcp
-
Create a virtual environment and install dependencies:
python -m venv .venv source .venv/bin/activate # On Windows: .venv\Scripts\activate pip install -e .
-
Create a
.env
file with your API keys:GEMINI_API_KEY=your_gemini_api_key YOUTUBE_API_KEY=your_youtube_api_key
-
Run MCP Server
mcp dev main.py
Navigate to Stdio
OR
-
Go cursor or windsurf configure with this json content:
{ "youtube": { "command": "uv", "args": [ "--directory", "/absolute/path/to/youtube-mcp", "run", "main.py", "--transport", "stdio", "--debug" ] } }
Available Tools
youtube/get-transcript
: Get video transcriptyoutube/summarize
: Generate a video summaryyoutube/query
: Answer questions about a videoyoutube/search
: Search for YouTube videosyoutube/get-comments
: Retrieve video commentsyoutube/get-likes
: Get video like count
Contributing
Contributions welcome! Please feel free to submit a Pull Request.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.