
XRAY MCP
Enables AI assistants to understand and navigate codebases through structural analysis. Provides code mapping, symbol search, and impact analysis using ast-grep for accurate parsing of Python, JavaScript, TypeScript, and Go projects.
README
XRAY MCP - Progressive Code Intelligence for AI Assistants
❌ Without XRAY
AI assistants struggle with codebase understanding. You get:
- ❌ "I can't see your code structure"
- ❌ "I don't know what depends on this function"
- ❌ Generic refactoring advice without impact analysis
- ❌ No understanding of symbol relationships
✅ With XRAY
XRAY gives AI assistants code navigation capabilities. Add use XRAY tools
to your prompt:
Analyze the UserService class and show me what would break if I change the authenticate method. use XRAY tools
Find all functions that call validate_user and show their dependencies. use XRAY tools
XRAY provides three focused tools:
- 🗺️ Map (
explore_repo
) - See project structure with symbol skeletons - 🔍 Find (
find_symbol
) - Locate functions and classes with fuzzy search - 💥 Impact (
what_breaks
) - Find where a symbol is referenced
🚀 Quick Install
Modern Install with uv (Recommended)
# Install uv if you don't have it
curl -LsSf https://astral.sh/uv/install.sh | sh
# Clone and install XRAY
git clone https://github.com/srijanshukla18/xray.git
cd xray
uv tool install .
Automated Install with uv
For the quickest setup, this script automates the uv
installation process.
curl -fsSL https://raw.githubusercontent.com/srijanshukla18/xray/main/install.sh | bash
Generate Config
# Get config for your tool
python mcp-config-generator.py cursor local_python
python mcp-config-generator.py claude docker
python mcp-config-generator.py vscode source
Language Support
XRAY uses ast-grep, a tree-sitter powered structural search tool, providing accurate parsing for:
- Python - Functions, classes, methods, async functions
- JavaScript - Functions, classes, arrow functions, imports
- TypeScript - All JavaScript features plus interfaces, type aliases
- Go - Functions, structs, interfaces, methods
ast-grep ensures structural accuracy - it understands code syntax, not just text patterns.
The XRAY Workflow - Progressive Discovery
1. Map - Start Simple, Then Zoom In
# First: Get the big picture (directories only)
tree = explore_repo("/path/to/project")
# Returns:
# /path/to/project/
# ├── src/
# ├── tests/
# ├── docs/
# └── config/
# Then: Zoom into areas of interest with full details
tree = explore_repo("/path/to/project", focus_dirs=["src"], include_symbols=True)
# Returns:
# /path/to/project/
# └── src/
# ├── auth.py
# │ ├── class AuthService: # Handles user authentication
# │ ├── def authenticate(username, password): # Validates user credentials
# │ └── def logout(session_id): # Ends user session
# └── models.py
# ├── class User(BaseModel): # User account model
# └── ... and 3 more
# Or: Limit depth for large codebases
tree = explore_repo("/path/to/project", max_depth=2, include_symbols=True)
2. Find - Locate Specific Symbols
# Find symbols matching "authenticate" (fuzzy search)
symbols = find_symbol("/path/to/project", "authenticate")
# Returns list of exact symbol objects with name, type, path, line numbers
3. Impact - See What Would Break
# Find where authenticate_user is used
symbol = symbols[0] # From find_symbol
result = what_breaks(symbol)
# Returns: {"references": [...], "total_count": 12,
# "note": "Found 12 potential references based on text search..."}
Architecture
FastMCP Server (mcp_server.py)
↓
Core Engine (src/xray/core/)
└── indexer.py # Orchestrates ast-grep for structural analysis
↓
ast-grep (external binary)
└── Tree-sitter powered structural search
Stateless design - No database, no persistent index. Each operation runs fresh ast-grep queries for real-time accuracy.
Why ast-grep?
Traditional grep searches text. ast-grep searches code structure:
- grep: Finds "authenticate" in function names, variables, comments, strings
- ast-grep: Finds only
def authenticate()
orfunction authenticate()
definitions
This structural approach provides clean, accurate results essential for reliable code intelligence.
Performance Characteristics
- Startup: Fast - launches ast-grep subprocess
- File tree: Python directory traversal
- Symbol search: Runs multiple ast-grep patterns, speed depends on codebase size
- Impact analysis: Name-based search across all files
- Memory: Minimal - no persistent state
What Makes This Practical
- Progressive Discovery - Start with directories, add symbols only where needed
- Smart Caching - Symbol extraction cached per git commit for instant re-runs
- Flexible Focus - Use
focus_dirs
to zoom into specific parts of large codebases - Enhanced Symbols - See function signatures and docstrings, not just names
- Based on tree-sitter - ast-grep provides accurate structural analysis
XRAY helps AI assistants avoid information overload while providing deep code intelligence where needed.
Stateless Design
XRAY performs on-demand structural analysis using ast-grep. There's no database to manage, no index to build, and no state to maintain. Each query runs fresh against your current code.
Getting Started
- Install: See
getting_started.md
for modern installation - Map the terrain:
explore_repo("/path/to/project")
- Find your target:
find_symbol("/path/to/project", "UserService")
- Assess impact:
what_breaks(symbol)
The XRAY Philosophy
XRAY bridges the gap between simple text search and complex LSP servers:
- More than grep - Matches code syntax patterns, not just text
- Less than LSP - No language servers or complex setup
- Practical for AI - Provides structured data about code relationships
A simple tool that helps AI assistants navigate codebases more effectively than text search alone.
Architectural Journey & Design Rationale
The current implementation of XRAY is the result of a rigorous evaluation of multiple code analysis methodologies. My journey involved prototyping and assessing several distinct approaches, each with its own set of trade-offs. Below is a summary of the considered architectures and the rationale for my final decision.
-
Naive Grep-Based Analysis: I initially explored a baseline approach using standard
grep
for symbol identification. While expedient, this method proved fundamentally inadequate due to its inability to differentiate between syntactical constructs and simple text occurrences (e.g., comments, strings, variable names). The high signal-to-noise ratio rendered it impractical for reliable code intelligence. -
Tree-Sitter Native Integration: A direct integration with
tree-sitter
was evaluated to leverage its powerful parsing capabilities. However, this path was fraught with significant implementation complexities, including intractable errors within the parser generation and binding layers. The maintenance overhead and steep learning curve for custom grammar development were deemed prohibitive for a lean, multi-language tool. -
Language Server Protocol (LSP): I considered leveraging the Language Server Protocol for its comprehensive, standardized approach to code analysis. This was ultimately rejected due to the excessive operational burden it would impose on the end-user, requiring them to install, configure, and manage separate LSPs for each language in their environment. This friction conflicted with my goal of a lightweight, zero-configuration user experience.
-
Comby-Based Structural Search:
Comby
was explored for its structural search and replacement capabilities. Despite its promising feature set, I encountered significant runtime instability and idiosyncratic behavior that undermined its reliability for mission-critical code analysis. The tool's performance and consistency did not meet my stringent requirements for a production-ready system. -
ast-grep as the Core Engine: My final and current architecture is centered on
ast-grep
. This tool provides the optimal balance of structural awareness, performance, and ease of integration. By leveragingtree-sitter
internally, it offers robust, syntactically-aware code analysis without the complexities of directtree-sitter
integration or the overhead of LSPs. Its reliability and rich feature set for structural querying made it the unequivocal choice for XRAY's core engine.
Getting Started with XRAY - Modern Installation with uv
XRAY is a minimal-dependency code intelligence system that enhances AI assistants' understanding of codebases. This guide shows how to install and use XRAY with the modern uv
package manager.
Prerequisites
- Python 3.10 or later
- uv - Fast Python package manager
Installing uv
# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# Or with pip
pip install uv
Installation Options
Option 1: Automated Install (Easiest)
For the quickest setup, use the one-line installer from the README.md
. This will handle everything for you.
curl -fsSL https://raw.githubusercontent.com/srijanshukla18/xray/main/install.sh | bash
Option 2: Quick Try with uvx (Recommended for Testing)
Run XRAY directly without installation using uvx
:
# Clone the repository
git clone https://github.com/srijanshukla18/xray.git
cd xray
# Run XRAY directly with uvx
uvx --from . xray-mcp
Option 3: Install as a Tool (Recommended for Regular Use)
Install XRAY as a persistent tool:
# Clone and install
git clone https://github.com/srijanshukla18/xray.git
cd xray
# Install with uv
uv tool install .
# Now you can run xray-mcp from anywhere
xray-mcp
Option 4: Development Installation
For contributing or modifying XRAY:
# Clone the repository
git clone https://github.com/srijanshukla18/xray.git
cd xray
# Create and activate virtual environment with uv
uv venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install in editable mode
uv pip install -e .
# Run the server
python -m xray.mcp_server
Configure Your AI Assistant
After installation, configure your AI assistant to use XRAY:
Using the MCP Config Generator (Recommended)
For easier configuration, use the mcp-config-generator.py
script located in the XRAY repository. This script can generate the correct JSON configuration for various AI assistants and installation methods.
To use it:
-
Navigate to the XRAY repository root:
cd /path/to/xray
-
Run the script with your desired tool and installation method. For example, to get the configuration for Claude Desktop with an installed
xray-mcp
script:python mcp-config-generator.py claude installed_script
Or for VS Code with a local Python installation:
python mcp-config-generator.py vscode local_python
The script will print the JSON configuration and instructions on where to add it.
Available tools:
cursor
,claude
,vscode
Available methods:local_python
,docker
,source
,installed_script
(method availability varies by tool)
Manual Configuration (Advanced)
If you prefer to configure manually, here are examples for common AI assistants:
Claude CLI (Claude Code)
For Claude CLI users, simply run:
claude mcp add xray xray-mcp -s local
Then verify it's connected:
claude mcp list | grep xray
Claude Desktop
Add to ~/Library/Application Support/Claude/claude_desktop_config.json
(macOS):
{
"mcpServers": {
"xray": {
"command": "uvx",
"args": ["--from", "/path/to/xray", "xray-mcp"]
}
}
}
Or if installed as a tool:
{
"mcpServers": {
"xray": {
"command": "xray-mcp"
}
}
}
Cursor
Settings → Cursor Settings → MCP → Add new global MCP server:
{
"mcpServers": {
"xray": {
"command": "xray-mcp"
}
}
}
Minimal Dependencies
One of XRAY's best features is its minimal dependency profile. You don't need to install a suite of language servers. XRAY uses:
- ast-grep: A single, fast binary for structural code analysis.
- Python: For the server and core logic.
This means you can start using XRAY immediately after installation with no complex setup!
Verify Installation
1. Check XRAY is accessible
# If installed as tool
xray-mcp --version
# If using uvx
uvx --from /path/to/xray xray-mcp --version
2. Test basic functionality
Create a test file test_xray.py
:
def hello_world():
print("Hello from XRAY test!")
def calculate_sum(a, b):
return a + b
class Calculator:
def multiply(self, x, y):
return x * y
3. In your AI assistant, test these commands:
Build the index for the current directory. use XRAY tools
Expected: Success message with files indexed
Find all functions containing "hello". use XRAY tools
Expected: Should find hello_world
function
What would break if I change the multiply method? use XRAY tools
Expected: Impact analysis showing any dependencies
Usage Examples
Once configured, use XRAY by adding "use XRAY tools" to your prompts:
# Index a codebase
"Index the src/ directory for analysis. use XRAY tools"
# Find symbols
"Find all classes that contain 'User' in their name. use XRAY tools"
# Impact analysis
"What breaks if I change the authenticate method in UserService? use XRAY tools"
# Dependency tracking
"What does the PaymentProcessor class depend on? use XRAY tools"
# Location queries
"What function is defined at line 125 in main.py? use XRAY tools"
Troubleshooting
uv not found
Make sure uv is in your PATH:
# Add to ~/.bashrc or ~/.zshrc
export PATH="$HOME/.cargo/bin:$PATH"
Permission denied
On macOS/Linux, you might need to make the script executable:
chmod +x ~/.local/bin/xray-mcp
Python version issues
XRAY requires Python 3.10+. Check your version:
python --version
# If needed, install Python 3.10+ with uv
uv python install 3.10
MCP connection issues
- Check XRAY is running:
xray-mcp --test
- Verify your MCP config JSON is valid
- Restart your AI assistant after config changes
Advanced Configuration
Custom Database Location
Set the XRAY_DB_PATH
environment variable:
export XRAY_DB_PATH="$HOME/.xray/databases"
Debug Mode
Enable debug logging:
export XRAY_DEBUG=1
What's Next?
-
Index your first repository: In your AI assistant, ask it to "Build the index for my project. use XRAY tools"
-
Explore the tools:
build_index
- Visual file tree of your repositoryfind_symbol
- Fuzzy search for functions, classes, and methodswhat_breaks
- Find what code depends on a symbol (reverse dependencies)what_depends
- Find what a symbol depends on (calls and imports)
Note: Results may include matches from comments or strings. The AI assistant will intelligently filter based on context.
-
Read the documentation: Check out the README for detailed examples and API reference
Why XRAY Uses a Minimal Dependency Approach
XRAY is designed for simplicity and ease of use. It relies on:
- ast-grep: A powerful and fast single-binary tool for code analysis.
- Python: For its robust standard library and ease of scripting.
This approach avoids the complexity of setting up and managing multiple language servers, while still providing accurate, structural code intelligence.
Benefits of Using uv
- 10-100x faster than pip for installations
- No virtual environment hassles - uv manages everything
- Reproducible installs - uv.lock ensures consistency
- Built-in Python management - install any Python version
- Global tool management - like pipx but faster
Happy coding with XRAY! 🚀
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.