Xplainable MCP Server
Enables secure access to Xplainable AI platform capabilities for managing machine learning models, deployments, and preprocessors. Supports both read operations (listing models, deployments) and write operations (deploying models, generating reports) with proper authentication and rate limiting.
README
Xplainable MCP Server
A Model Context Protocol (MCP) server that provides secure access to Xplainable AI platform capabilities through standardized tools and resources.
Features
- Secure Authentication: Token-based authentication with environment variable management
- Read Operations: Access models, deployments, preprocessors, and collections
- Write Operations: Deploy models, manage deployments, generate reports (with proper authorization)
- Type Safety: Full Pydantic model validation for all inputs/outputs
- Rate Limiting: Built-in rate limiting and request validation
- Audit Logging: Comprehensive logging of all operations
Installation
pip install xplainable-mcp-server
CLI Commands
The server includes a CLI for management and documentation:
# List all available tools
xplainable-mcp-cli list-tools
xplainable-mcp-cli list-tools --format json
xplainable-mcp-cli list-tools --format markdown
# Validate configuration
xplainable-mcp-cli validate-config
xplainable-mcp-cli validate-config --env-file /path/to/.env
# Test API connection
xplainable-mcp-cli test-connection
# Generate tool documentation
xplainable-mcp-cli generate-docs
xplainable-mcp-cli generate-docs --output TOOLS.md
Quick Start
For Production Users
If you just want to use this MCP server with Claude Code:
- Get your Xplainable API key from https://platform.xplainable.io
- Add the MCP configuration (see Claude Code Configuration above)
- That's it! Claude Code will handle installation automatically
For Developers
1. Set up environment variables
Create a .env file with your Xplainable credentials:
XPLAINABLE_API_KEY=your-api-key-here
XPLAINABLE_HOST=https://platform.xplainable.io
XPLAINABLE_ORG_ID=your-org-id # Optional
XPLAINABLE_TEAM_ID=your-team-id # Optional
2. Run the server
# For development (localhost only)
xplainable-mcp
# For production (with TLS/proxy)
xplainable-mcp --host 0.0.0.0 --port 8000
3. Connect with an MCP client
Claude Code Configuration
Option 1: Install from GitHub (Recommended)
{
"mcpServers": {
"xplainable": {
"command": "uvx",
"args": ["--from", "git+https://github.com/yourusername/xplainable-mcp-server.git", "xplainable-mcp-server"],
"env": {
"XPLAINABLE_API_KEY": "your-api-key-here",
"XPLAINABLE_HOST": "https://platform.xplainable.io"
}
}
}
}
Option 2: Clone and run from source
{
"mcpServers": {
"xplainable": {
"command": "python",
"args": ["-m", "xplainable_mcp.server"],
"cwd": "/path/to/cloned/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-api-key-here",
"XPLAINABLE_HOST": "https://platform.xplainable.io"
}
}
}
}
Option 3: Development with local backend
{
"mcpServers": {
"xplainable": {
"command": "python",
"args": ["-m", "xplainable_mcp.server"],
"cwd": "/path/to/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-development-key",
"XPLAINABLE_HOST": "http://localhost:8000",
"ENABLE_WRITE_TOOLS": "true"
}
}
}
}
Claude Desktop Configuration
Add the configuration to your Claude Desktop MCP settings file:
File Locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
Option 1: Install from GitHub (Recommended)
{
"mcpServers": {
"xplainable": {
"command": "uvx",
"args": ["--from", "git+https://github.com/yourusername/xplainable-mcp-server.git", "xplainable-mcp-server"],
"env": {
"XPLAINABLE_API_KEY": "your-api-key-here",
"XPLAINABLE_HOST": "https://platform.xplainable.io"
}
}
}
}
Option 2: Development setup (from source)
{
"mcpServers": {
"xplainable": {
"command": "python",
"args": ["-m", "xplainable_mcp.server"],
"cwd": "/path/to/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-api-key",
"XPLAINABLE_HOST": "https://platform.xplainable.io",
"ENABLE_WRITE_TOOLS": "true"
}
}
}
}
Option 3: Using conda environment
{
"mcpServers": {
"xplainable": {
"command": "conda",
"args": ["run", "-n", "xplainable-mcp", "python", "-m", "xplainable_mcp.server"],
"cwd": "/path/to/xplainable-mcp-server",
"env": {
"XPLAINABLE_API_KEY": "your-api-key",
"XPLAINABLE_HOST": "https://platform.xplainable.io",
"ENABLE_WRITE_TOOLS": "true"
}
}
}
}
Development Setup
For Local Development with Claude Code
- Set up the environment:
# Create conda environment
conda create -n xplainable-mcp python=3.9
conda activate xplainable-mcp
# Install dependencies
pip install -e .
pip install -e /path/to/xplainable-client
- Configure environment variables:
# .env file for development
XPLAINABLE_API_KEY=your-development-api-key
XPLAINABLE_HOST=http://localhost:8000
ENABLE_WRITE_TOOLS=true
RATE_LIMIT_ENABLED=false
- Test the setup:
# Test connection to local backend
python -c "
import sys
sys.path.append('.')
from xplainable_mcp.server import get_client
client = get_client()
print('Connection successful!')
print(f'Connected to: {client.connection_info}')
"
Example Deployment Workflow
Here's a complete example of deploying a model and testing inference:
# 1. List available models
python -c "
from xplainable_mcp.server import get_client
client = get_client()
models = client.models.list_team_models()
for model in models[:3]: # Show first 3
print(f'Model: {model.display_name} (ID: {model.model_id})')
print(f' Version: {model.active_version}')
print(f' Deployed: {model.deployed}')
"
# 2. Deploy a model version (replace with actual version_id)
python -c "
from xplainable_mcp.server import get_client
client = get_client()
deployment = client.deployments.deploy('your-version-id-here')
print(f'Deployment ID: {deployment.deployment_id}')
"
# 3. Generate deployment key
python -c "
from xplainable_mcp.server import get_client
client = get_client()
key = client.deployments.generate_deploy_key('deployment-id', 'Test Key')
print(f'Deploy Key: {key}')
"
# 4. Test inference (requires active deployment)
curl -X POST https://inference.xplainable.io/v1/predict \
-H 'Content-Type: application/json' \
-d '{
"deploy_key": "your-deploy-key",
"data": {"feature1": "value1", "feature2": 123}
}'
Available Tools
Discovery Tools
list_tools()- List all available MCP tools with descriptions and parameters
Read-Only Tools
get_connection_info()- Get connection and diagnostic informationlist_team_models(team_id?)- List all models for a teamget_model(model_id)- Get detailed model informationlist_model_versions(model_id)- List all versions of a modellist_deployments(team_id?)- List all deploymentslist_preprocessors(team_id?)- List all preprocessorsget_preprocessor(preprocessor_id)- Get preprocessor detailsget_collection_scenarios(collection_id)- List scenarios in a collectionget_active_team_deploy_keys_count(team_id?)- Get count of active deploy keysmisc_get_version_info()- Get version information
Write Tools (Restricted)
Note: Write tools require ENABLE_WRITE_TOOLS=true in environment
activate_deployment(deployment_id)- Activate a deploymentdeactivate_deployment(deployment_id)- Deactivate a deploymentgenerate_deploy_key(deployment_id, description?, days_until_expiry?)- Generate deployment keyget_deployment_payload(deployment_id)- Get sample payload data for deploymentgpt_generate_report(model_id, version_id, ...)- Generate GPT report
Security
Authentication
The server requires authentication via:
- Bearer tokens for MCP client connections
- API keys for Xplainable backend (from environment only)
Transport Security
- Default binding to localhost only
- TLS termination at reverse proxy recommended
- Origin/Host header validation
Rate Limiting
Per-tool and per-principal rate limits are enforced to prevent abuse.
Synchronization with xplainable-client
When the xplainable-client library is updated, use these tools to keep the MCP server synchronized:
Quick Sync Check
# Check if sync is needed
python scripts/sync_workflow.py
# Generate detailed report
python scripts/sync_workflow.py --markdown sync_report.md
# Check current tool coverage
xplainable-mcp-cli list-tools --format json
Comprehensive Sync Process
- Read the sync workflow guide:
SYNC_WORKFLOW.md - Review common scenarios:
examples/sync_scenarios.md - Run automated analysis:
python scripts/sync_workflow.py - Implement changes following the patterns in
server.py - Test thoroughly and update documentation
Development
Setup
# Clone the repository
git clone https://github.com/xplainable/xplainable-mcp-server
cd xplainable-mcp-server
# Install development dependencies
pip install -e ".[dev]"
# Run tests
pytest
# Type checking
mypy xplainable_mcp
# Linting
ruff check .
black --check .
Testing
# Run all tests
pytest
# Run with coverage
pytest --cov=xplainable_mcp
# Run specific tests
pytest tests/test_tools.py
Deployment
Docker
# Build the image
docker build -t xplainable-mcp-server .
# Run with environment file
docker run --env-file .env -p 8000:8000 xplainable-mcp-server
Compatibility Matrix
| MCP Server Version | Xplainable Client | Backend API |
|---|---|---|
| 0.1.x | >=1.0.0 | v1 |
Contributing
See CONTRIBUTING.md for guidelines.
Security
For security issues, please see SECURITY.md.
License
MIT License - see LICENSE for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.