Xplainable MCP Server

Xplainable MCP Server

Enables secure access to Xplainable AI platform capabilities for managing machine learning models, deployments, and preprocessors. Supports both read operations (listing models, deployments) and write operations (deploying models, generating reports) with proper authentication and rate limiting.

Category
Visit Server

README

Xplainable MCP Server

A Model Context Protocol (MCP) server that provides secure access to Xplainable AI platform capabilities through standardized tools and resources.

Features

  • Secure Authentication: Token-based authentication with environment variable management
  • Read Operations: Access models, deployments, preprocessors, and collections
  • Write Operations: Deploy models, manage deployments, generate reports (with proper authorization)
  • Type Safety: Full Pydantic model validation for all inputs/outputs
  • Rate Limiting: Built-in rate limiting and request validation
  • Audit Logging: Comprehensive logging of all operations

Installation

pip install xplainable-mcp-server

CLI Commands

The server includes a CLI for management and documentation:

# List all available tools
xplainable-mcp-cli list-tools
xplainable-mcp-cli list-tools --format json
xplainable-mcp-cli list-tools --format markdown

# Validate configuration
xplainable-mcp-cli validate-config
xplainable-mcp-cli validate-config --env-file /path/to/.env

# Test API connection
xplainable-mcp-cli test-connection

# Generate tool documentation
xplainable-mcp-cli generate-docs
xplainable-mcp-cli generate-docs --output TOOLS.md

Quick Start

For Production Users

If you just want to use this MCP server with Claude Code:

  1. Get your Xplainable API key from https://platform.xplainable.io
  2. Add the MCP configuration (see Claude Code Configuration above)
  3. That's it! Claude Code will handle installation automatically

For Developers

1. Set up environment variables

Create a .env file with your Xplainable credentials:

XPLAINABLE_API_KEY=your-api-key-here
XPLAINABLE_HOST=https://platform.xplainable.io
XPLAINABLE_ORG_ID=your-org-id  # Optional
XPLAINABLE_TEAM_ID=your-team-id  # Optional

2. Run the server

# For development (localhost only)
xplainable-mcp

# For production (with TLS/proxy)
xplainable-mcp --host 0.0.0.0 --port 8000

3. Connect with an MCP client

Claude Code Configuration

Option 1: Install from GitHub (Recommended)

{
  "mcpServers": {
    "xplainable": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/yourusername/xplainable-mcp-server.git", "xplainable-mcp-server"],
      "env": {
        "XPLAINABLE_API_KEY": "your-api-key-here",
        "XPLAINABLE_HOST": "https://platform.xplainable.io"
      }
    }
  }
}

Option 2: Clone and run from source

{
  "mcpServers": {
    "xplainable": {
      "command": "python",
      "args": ["-m", "xplainable_mcp.server"],
      "cwd": "/path/to/cloned/xplainable-mcp-server",
      "env": {
        "XPLAINABLE_API_KEY": "your-api-key-here",
        "XPLAINABLE_HOST": "https://platform.xplainable.io"
      }
    }
  }
}

Option 3: Development with local backend

{
  "mcpServers": {
    "xplainable": {
      "command": "python",
      "args": ["-m", "xplainable_mcp.server"],
      "cwd": "/path/to/xplainable-mcp-server",
      "env": {
        "XPLAINABLE_API_KEY": "your-development-key",
        "XPLAINABLE_HOST": "http://localhost:8000",
        "ENABLE_WRITE_TOOLS": "true"
      }
    }
  }
}

Claude Desktop Configuration

Add the configuration to your Claude Desktop MCP settings file:

File Locations:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

Option 1: Install from GitHub (Recommended)

{
  "mcpServers": {
    "xplainable": {
      "command": "uvx",
      "args": ["--from", "git+https://github.com/yourusername/xplainable-mcp-server.git", "xplainable-mcp-server"],
      "env": {
        "XPLAINABLE_API_KEY": "your-api-key-here",
        "XPLAINABLE_HOST": "https://platform.xplainable.io"
      }
    }
  }
}

Option 2: Development setup (from source)

{
  "mcpServers": {
    "xplainable": {
      "command": "python",
      "args": ["-m", "xplainable_mcp.server"],
      "cwd": "/path/to/xplainable-mcp-server",
      "env": {
        "XPLAINABLE_API_KEY": "your-api-key",
        "XPLAINABLE_HOST": "https://platform.xplainable.io",
        "ENABLE_WRITE_TOOLS": "true"
      }
    }
  }
}

Option 3: Using conda environment

{
  "mcpServers": {
    "xplainable": {
      "command": "conda",
      "args": ["run", "-n", "xplainable-mcp", "python", "-m", "xplainable_mcp.server"],
      "cwd": "/path/to/xplainable-mcp-server",
      "env": {
        "XPLAINABLE_API_KEY": "your-api-key",
        "XPLAINABLE_HOST": "https://platform.xplainable.io",
        "ENABLE_WRITE_TOOLS": "true"
      }
    }
  }
}

Development Setup

For Local Development with Claude Code

  1. Set up the environment:
# Create conda environment
conda create -n xplainable-mcp python=3.9
conda activate xplainable-mcp

# Install dependencies
pip install -e .
pip install -e /path/to/xplainable-client
  1. Configure environment variables:
# .env file for development
XPLAINABLE_API_KEY=your-development-api-key
XPLAINABLE_HOST=http://localhost:8000
ENABLE_WRITE_TOOLS=true
RATE_LIMIT_ENABLED=false
  1. Test the setup:
# Test connection to local backend
python -c "
import sys
sys.path.append('.')
from xplainable_mcp.server import get_client
client = get_client()
print('Connection successful!')
print(f'Connected to: {client.connection_info}')
"

Example Deployment Workflow

Here's a complete example of deploying a model and testing inference:

# 1. List available models
python -c "
from xplainable_mcp.server import get_client
client = get_client()
models = client.models.list_team_models()
for model in models[:3]:  # Show first 3
    print(f'Model: {model.display_name} (ID: {model.model_id})')
    print(f'  Version: {model.active_version}')
    print(f'  Deployed: {model.deployed}')
"

# 2. Deploy a model version (replace with actual version_id)
python -c "
from xplainable_mcp.server import get_client
client = get_client()
deployment = client.deployments.deploy('your-version-id-here')
print(f'Deployment ID: {deployment.deployment_id}')
"

# 3. Generate deployment key
python -c "
from xplainable_mcp.server import get_client
client = get_client()
key = client.deployments.generate_deploy_key('deployment-id', 'Test Key')
print(f'Deploy Key: {key}')
"

# 4. Test inference (requires active deployment)
curl -X POST https://inference.xplainable.io/v1/predict \
  -H 'Content-Type: application/json' \
  -d '{
    "deploy_key": "your-deploy-key",
    "data": {"feature1": "value1", "feature2": 123}
  }'

Available Tools

Discovery Tools

  • list_tools() - List all available MCP tools with descriptions and parameters

Read-Only Tools

  • get_connection_info() - Get connection and diagnostic information
  • list_team_models(team_id?) - List all models for a team
  • get_model(model_id) - Get detailed model information
  • list_model_versions(model_id) - List all versions of a model
  • list_deployments(team_id?) - List all deployments
  • list_preprocessors(team_id?) - List all preprocessors
  • get_preprocessor(preprocessor_id) - Get preprocessor details
  • get_collection_scenarios(collection_id) - List scenarios in a collection
  • get_active_team_deploy_keys_count(team_id?) - Get count of active deploy keys
  • misc_get_version_info() - Get version information

Write Tools (Restricted)

Note: Write tools require ENABLE_WRITE_TOOLS=true in environment

  • activate_deployment(deployment_id) - Activate a deployment
  • deactivate_deployment(deployment_id) - Deactivate a deployment
  • generate_deploy_key(deployment_id, description?, days_until_expiry?) - Generate deployment key
  • get_deployment_payload(deployment_id) - Get sample payload data for deployment
  • gpt_generate_report(model_id, version_id, ...) - Generate GPT report

Security

Authentication

The server requires authentication via:

  • Bearer tokens for MCP client connections
  • API keys for Xplainable backend (from environment only)

Transport Security

  • Default binding to localhost only
  • TLS termination at reverse proxy recommended
  • Origin/Host header validation

Rate Limiting

Per-tool and per-principal rate limits are enforced to prevent abuse.

Synchronization with xplainable-client

When the xplainable-client library is updated, use these tools to keep the MCP server synchronized:

Quick Sync Check

# Check if sync is needed
python scripts/sync_workflow.py

# Generate detailed report
python scripts/sync_workflow.py --markdown sync_report.md

# Check current tool coverage
xplainable-mcp-cli list-tools --format json

Comprehensive Sync Process

  1. Read the sync workflow guide: SYNC_WORKFLOW.md
  2. Review common scenarios: examples/sync_scenarios.md
  3. Run automated analysis: python scripts/sync_workflow.py
  4. Implement changes following the patterns in server.py
  5. Test thoroughly and update documentation

Development

Setup

# Clone the repository
git clone https://github.com/xplainable/xplainable-mcp-server
cd xplainable-mcp-server

# Install development dependencies
pip install -e ".[dev]"

# Run tests
pytest

# Type checking
mypy xplainable_mcp

# Linting
ruff check .
black --check .

Testing

# Run all tests
pytest

# Run with coverage
pytest --cov=xplainable_mcp

# Run specific tests
pytest tests/test_tools.py

Deployment

Docker

# Build the image
docker build -t xplainable-mcp-server .

# Run with environment file
docker run --env-file .env -p 8000:8000 xplainable-mcp-server

Compatibility Matrix

MCP Server Version Xplainable Client Backend API
0.1.x >=1.0.0 v1

Contributing

See CONTRIBUTING.md for guidelines.

Security

For security issues, please see SECURITY.md.

License

MIT License - see LICENSE for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured