xcomet-mcp-server

xcomet-mcp-server

Translation quality evaluation MCP Server powered by xCOMET. Provides quality scoring (0-1), error detection with severity levels, and optimized batch processing for AI-assisted translation workflows.

Category
Visit Server

README

xCOMET MCP Server

npm version MCP License: MIT

โš ๏ธ This is an unofficial community project, not affiliated with Unbabel.

Translation quality evaluation MCP Server powered by xCOMET (eXplainable COMET).

๐ŸŽฏ Overview

xCOMET MCP Server provides AI agents with the ability to evaluate machine translation quality. It integrates with the xCOMET model from Unbabel to provide:

  • Quality Scoring: Scores between 0-1 indicating translation quality
  • Error Detection: Identifies error spans with severity levels (minor/major/critical)
  • Batch Processing: Evaluate multiple translation pairs efficiently (optimized single model load)
  • GPU Support: Optional GPU acceleration for faster inference
graph LR
    A[AI Agent] --> B[Node.js MCP Server]
    B --> C[Python FastAPI Server]
    C --> D[xCOMET Model<br/>Persistent in Memory]
    D --> C
    C --> B
    B --> A

    style D fill:#9f9

๐Ÿ”ง Prerequisites

Python Environment

xCOMET requires Python with the following packages:

pip install "unbabel-comet>=2.2.0" fastapi uvicorn

Model Download

The first run will download the xCOMET model (~14GB for XL, ~42GB for XXL):

# Test model availability
python -c "from comet import download_model; download_model('Unbabel/XCOMET-XL')"

Node.js

  • Node.js >= 18.0.0
  • npm or yarn

๐Ÿ“ฆ Installation

# Clone the repository
git clone https://github.com/shuji-bonji/xcomet-mcp-server.git
cd xcomet-mcp-server

# Install dependencies
npm install

# Build
npm run build

๐Ÿš€ Usage

With Claude Desktop (npx)

Add to your Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"]
    }
  }
}

With Claude Code

claude mcp add xcomet -- npx -y xcomet-mcp-server

Local Installation

If you prefer a local installation:

npm install -g xcomet-mcp-server

Then configure:

{
  "mcpServers": {
    "xcomet": {
      "command": "xcomet-mcp-server"
    }
  }
}

HTTP Mode (Remote Access)

TRANSPORT=http PORT=3000 npm start

Then connect to http://localhost:3000/mcp

๐Ÿ› ๏ธ Available Tools

xcomet_evaluate

Evaluate translation quality for a single source-translation pair.

Parameters:

Name Type Required Description
source string โœ… Original source text
translation string โœ… Translated text to evaluate
reference string โŒ Reference translation
source_lang string โŒ Source language code (ISO 639-1)
target_lang string โŒ Target language code (ISO 639-1)
response_format "json" | "markdown" โŒ Output format (default: "json")
use_gpu boolean โŒ Use GPU for inference (default: false)

Example:

{
  "source": "The quick brown fox jumps over the lazy dog.",
  "translation": "็ด ๆ—ฉใ„่Œถ่‰ฒใฎใ‚ญใƒ„ใƒใŒๆ€ ๆƒฐใช็Šฌใ‚’้ฃ›ใณ่ถŠใˆใ‚‹ใ€‚",
  "source_lang": "en",
  "target_lang": "ja",
  "use_gpu": true
}

Response:

{
  "score": 0.847,
  "errors": [],
  "summary": "Good quality (score: 0.847) with 0 error(s) detected."
}

xcomet_detect_errors

Focus on detecting and categorizing translation errors.

Parameters:

Name Type Required Description
source string โœ… Original source text
translation string โœ… Translated text to analyze
reference string โŒ Reference translation
min_severity "minor" | "major" | "critical" โŒ Minimum severity (default: "minor")
response_format "json" | "markdown" โŒ Output format
use_gpu boolean โŒ Use GPU for inference (default: false)

xcomet_batch_evaluate

Evaluate multiple translation pairs in a single request.

Performance Note: With the persistent server architecture (v0.3.0+), the model stays loaded in memory. Batch evaluation processes all pairs efficiently without reloading the model.

Parameters:

Name Type Required Description
pairs array โœ… Array of {source, translation, reference?} (max 500)
source_lang string โŒ Source language code
target_lang string โŒ Target language code
response_format "json" | "markdown" โŒ Output format
use_gpu boolean โŒ Use GPU for inference (default: false)
batch_size number โŒ Batch size 1-64 (default: 8). Larger = faster but uses more memory

Example:

{
  "pairs": [
    {"source": "Hello", "translation": "ใ“ใ‚“ใซใกใฏ"},
    {"source": "Goodbye", "translation": "ใ•ใ‚ˆใ†ใชใ‚‰"}
  ],
  "use_gpu": true,
  "batch_size": 16
}

๐Ÿ”— Integration with Other MCP Servers

xCOMET MCP Server is designed to work alongside other MCP servers for complete translation workflows:

sequenceDiagram
    participant Agent as AI Agent
    participant DeepL as DeepL MCP Server
    participant xCOMET as xCOMET MCP Server
    
    Agent->>DeepL: Translate text
    DeepL-->>Agent: Translation result
    Agent->>xCOMET: Evaluate quality
    xCOMET-->>Agent: Score + Errors
    Agent->>Agent: Decide: Accept or retry?

Recommended Workflow

  1. Translate using DeepL MCP Server (official)
  2. Evaluate using xCOMET MCP Server
  3. Iterate if quality is below threshold

Example: DeepL + xCOMET Integration

Configure both servers in Claude Desktop:

{
  "mcpServers": {
    "deepl": {
      "command": "npx",
      "args": ["-y", "@anthropic/deepl-mcp-server"],
      "env": {
        "DEEPL_API_KEY": "your-api-key"
      }
    },
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"]
    }
  }
}

Then ask Claude:

"Translate this text to Japanese using DeepL, then evaluate the translation quality with xCOMET. If the score is below 0.8, suggest improvements."

โš™๏ธ Configuration

Environment Variables

Variable Default Description
TRANSPORT stdio Transport mode: stdio or http
PORT 3000 HTTP server port (when TRANSPORT=http)
XCOMET_MODEL Unbabel/XCOMET-XL xCOMET model to use
XCOMET_PYTHON_PATH (auto-detect) Python executable path (see below)
XCOMET_PRELOAD false Pre-load model at startup (v0.3.1+)
XCOMET_DEBUG false Enable verbose debug logging (v0.3.1+)

Model Selection

Choose the model based on your quality/performance needs:

Model Parameters Size Memory Reference Quality Use Case
Unbabel/XCOMET-XL 3.5B ~14GB ~8-10GB Optional โญโญโญโญ Recommended for most use cases
Unbabel/XCOMET-XXL 10.7B ~42GB ~20GB Optional โญโญโญโญโญ Highest quality, requires more resources
Unbabel/wmt22-comet-da 580M ~2GB ~3GB Required โญโญโญ Lightweight, faster loading

Important: wmt22-comet-da requires a reference translation for evaluation. XCOMET models support referenceless evaluation.

Tip: If you experience memory issues or slow model loading, try Unbabel/wmt22-comet-da for faster performance with slightly lower accuracy (but remember to provide reference translations).

To use a different model, set the XCOMET_MODEL environment variable:

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_MODEL": "Unbabel/XCOMET-XXL"
      }
    }
  }
}

Python Path Auto-Detection

The server automatically detects a Python environment with unbabel-comet installed:

  1. XCOMET_PYTHON_PATH environment variable (if set)
  2. pyenv versions (~/.pyenv/versions/*/bin/python3) - checks for comet module
  3. Homebrew Python (/opt/homebrew/bin/python3, /usr/local/bin/python3)
  4. Fallback: python3 command

This ensures the server works correctly even when the MCP host (e.g., Claude Desktop) uses a different Python than your terminal.

Example: Explicit Python path configuration

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_PYTHON_PATH": "/Users/you/.pyenv/versions/3.11.0/bin/python3"
      }
    }
  }
}

โšก Performance

Persistent Server Architecture (v0.3.0+)

The server uses a persistent Python FastAPI server that keeps the xCOMET model loaded in memory:

Request Time Notes
First request ~25-90s Model loading (varies by model size)
Subsequent requests ~500ms Model already loaded

This provides a 177x speedup for consecutive evaluations compared to reloading the model each time.

Eager Loading (v0.3.1+)

Enable XCOMET_PRELOAD=true to pre-load the model at server startup:

{
  "mcpServers": {
    "xcomet": {
      "command": "npx",
      "args": ["-y", "xcomet-mcp-server"],
      "env": {
        "XCOMET_PRELOAD": "true"
      }
    }
  }
}

With preload enabled, all requests are fast (~500ms), including the first one.

graph LR
    A[MCP Request] --> B[Node.js Server]
    B --> C[Python FastAPI Server]
    C --> D[xCOMET Model<br/>in Memory]
    D --> C
    C --> B
    B --> A

    style D fill:#9f9

Batch Processing Optimization

The xcomet_batch_evaluate tool processes all pairs with a single model load:

Pairs Estimated Time
10 ~30-40 sec
50 ~1-1.5 min
100 ~2 min

GPU vs CPU Performance

Mode 100 Pairs (Estimated)
CPU (batch_size=8) ~2 min
GPU (batch_size=16) ~20-30 sec

Note: GPU requires CUDA-compatible hardware and PyTorch with CUDA support. If GPU is not available, set use_gpu: false (default).

Best Practices

1. Let the persistent server do its job

With v0.3.0+, the model stays in memory. Multiple xcomet_evaluate calls are now efficient:

โœ… Fast: First call loads model, subsequent calls reuse it
   xcomet_evaluate(pair1)  # ~90s (model loads)
   xcomet_evaluate(pair2)  # ~500ms (model cached)
   xcomet_evaluate(pair3)  # ~500ms (model cached)

2. For many pairs, use batch evaluation

โœ… Even faster: Batch all pairs in one call
   xcomet_batch_evaluate(allPairs)  # Optimal throughput

3. Memory considerations

  • XCOMET-XL requires ~8-10GB RAM
  • For large batches (500 pairs), ensure sufficient memory
  • If memory is limited, split into smaller batches (100-200 pairs)

Auto-Restart (v0.3.1+)

The server automatically recovers from failures:

  • Monitors health every 30 seconds
  • Restarts after 3 consecutive health check failures
  • Up to 3 restart attempts before giving up

๐Ÿ“Š Quality Score Interpretation

Score Range Quality Recommendation
0.9 - 1.0 Excellent Ready for use
0.7 - 0.9 Good Minor review recommended
0.5 - 0.7 Fair Post-editing needed
0.0 - 0.5 Poor Re-translation recommended

๐Ÿ” Troubleshooting

Common Issues

"No module named 'comet'"

Cause: Python environment without unbabel-comet installed.

Solution:

# Check which Python is being used
python3 -c "import sys; print(sys.executable)"

# Install all required packages
pip install "unbabel-comet>=2.2.0" fastapi uvicorn

# Or specify Python path explicitly
export XCOMET_PYTHON_PATH=/path/to/python3

Model download fails or times out

Cause: Large model files (~14GB for XL) require stable internet connection.

Solution:

# Pre-download the model manually
python -c "from comet import download_model; download_model('Unbabel/XCOMET-XL')"

GPU not detected

Cause: PyTorch not installed with CUDA support.

Solution:

# Check CUDA availability
python -c "import torch; print(torch.cuda.is_available())"

# If False, reinstall PyTorch with CUDA
pip install torch --index-url https://download.pytorch.org/whl/cu118

Slow performance on Mac (MPS)

Cause: Mac MPS (Metal Performance Shaders) has compatibility issues with some operations.

Solution: The server automatically uses num_workers=1 for Mac MPS compatibility. For best performance on Mac, use CPU mode (use_gpu: false).

High memory usage or crashes

Cause: XCOMET-XL requires ~8-10GB RAM.

Solutions:

  1. Use the persistent server (v0.3.0+): Model loads once and stays in memory, avoiding repeated memory spikes
  2. Use a lighter model: Set XCOMET_MODEL=Unbabel/wmt22-comet-da for lower memory usage (~3GB)
  3. Reduce batch size: For large batches, process in smaller chunks (100-200 pairs)
  4. Close other applications: Free up RAM before running large evaluations
# Check available memory
free -h  # Linux
vm_stat | head -5  # macOS

VS Code or IDE crashes during evaluation

Cause: High memory usage from the xCOMET model (~8-10GB for XL).

Solution:

  • With v0.3.0+, the model loads once and stays in memory (no repeated loading)
  • If memory is still an issue, use a lighter model: XCOMET_MODEL=Unbabel/wmt22-comet-da
  • Close other memory-intensive applications before evaluation

Getting Help

If you encounter issues:

  1. Check the GitHub Issues
  2. Enable debug logging by checking Claude Desktop's Developer Mode logs
  3. Open a new issue with:
    • Your OS and Python version
    • The error message
    • Your configuration (without sensitive data)

๐Ÿงช Development

# Install dependencies
npm install

# Build TypeScript
npm run build

# Watch mode
npm run dev

# Test with MCP Inspector
npm run inspect

๐Ÿ“‹ Changelog

See CHANGELOG.md for version history and updates.

๐Ÿ“ License

MIT License - see LICENSE for details.

๐Ÿ™ Acknowledgments

๐Ÿ“š References

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured