wormhole-metrics-mcp

wormhole-metrics-mcp

An MCP server that analyzes cross-chain activity on the Wormhole protocol, providing insights into transaction volumes, top assets, source-destination chain pairs, and key performance indicators (KPIs).

Category
Visit Server

Tools

get_cross_chain_activity

Fetch cross-chain activity data from Wormholescan API and return as a pandas DataFrame. Args: timeSpan: Time span for data (7d, 30d, 90d, 1y, all-time). Default: 7d by: Render results by notional or tx count. Default: notional app: Comma-separated list of apps. Default: all apps Returns: String representation of a pandas DataFrame containing cross-chain activity data

get_money_flow

Fetch transaction count and volume data from Wormholescan API for a specific period. Args: timespan: Time span for data (1h, 1d, 1mo, 1y). Default: 1d from_date: From date in ISO 8601 format (e.g., 2024-01-01T15:04:05Z). Default: empty to_date: To date in ISO 8601 format (e.g., 2024-01-01T15:04:05Z). Default: empty appId: Application ID to filter results. Default: empty sourceChain: Source chain ID to filter results. Default: empty targetChain: Target chain ID to filter results. Default: empty Returns: String representation of a pandas DataFrame containing transaction count and volume data

get_top_assets_by_volume

Fetch top assets by volume from Wormholescan API. Args: timeSpan: Time span for data (7d, 15d, 30d). Default: 7d Returns: String representation of a pandas DataFrame containing top assets by volume

get_top_chain_pairs_by_num_transfers

Fetch top chain pairs by number of transfers from Wormholescan API. Args: timeSpan: Time span for data (7d, 15d, 30d). Default: 7d Returns: String representation of a pandas DataFrame containing top chain pairs by number of transfers

get_top_symbols_by_volume

Fetch top symbols by volume from Wormholescan API. Args: timeSpan: Time span for data (7d, 15d, 30d). Default: 7d Returns: String representation of a pandas DataFrame containing top symbols by volume

get_top100_corridors

Fetch top 100 token corridors by number of transactions from Wormholescan API. Args: timeSpan: Time span for data (2d, 7d). Default: 2d Returns: String representation of a pandas DataFrame containing top 100 corridors

get_kpi_list

Fetch a list of KPIs for Wormhole from Wormholescan API. Returns: String representation of a pandas DataFrame containing Wormhole KPIs

README

Wormhole Metrics MCP

An MCP server that analyzes cross-chain activity on the Wormhole protocol, providing insights into transaction volumes, top assets, source-destination chain pairs, and key performance indicators (KPIs).

GitHub License Python Version Status

Features

  • Comprehensive Tools: Includes tools for cross-chain activity, money flow, top assets, chain pairs, symbols, token corridors, and KPIs.
  • Markdown Output: Returns data as Markdown-formatted tables for clear presentation.

Installation

Prerequisites

  • Python 3.10 or higher
  • uv (recommended package manager)

Setup

  1. Clone the Repository

    git clone https://github.com/kukapay/wormhole-metrics-mcp.git
    cd wormhole-metrics-mcp
    
  2. Install Dependencies

    uv sync
    
  3. Installing to Claude Desktop:

    Install the server as a Claude Desktop application:

    uv run mcp install main.py --name "Wormhole Metrics"
    

    Configuration file as a reference:

    {
       "mcpServers": {
           "Wormhole Metrics": {
               "command": "uv",
               "args": [ "--directory", "/path/to/wormhole-metrics-mcp", "run", "main.py" ]
           }
       }
    }
    

    Replace /path/to/wormhole-metrics-mcp with your actual installation path.

Usage

The wormhole-metrics-mcp server exposes several tools via the MCP interface. Below is an overview of the tools and their usage.

Tools

  1. get_cross_chain_activity

    • Description: Fetches cross-chain activity data, returning a pivot table of volumes between source and destination chains.
    • Parameters:
      • timeSpan: 7d, 30d, 90d, 1y, all-time (default: 7d)
      • by: notional, tx count (default: notional)
      • app: Comma-separated list of apps (default: empty)
    • Example:
      • Prompt: "Show me the cross-chain activity for the last 7 days, measured by notional volume."
      • Output:
        | source_chain | Solana | Ethereum | Base       |
        |--------------|--------|---------|------------|
        | Mantle       | 23.545 |         |            |
        | Polygon      |        | 245951  | 747048     |
        
  2. get_money_flow

    • Description: Retrieves transaction count and volume data for a specific period.
    • Parameters:
      • timespan: 1h, 1d, 1mo, 1y (default: 1d)
      • from_date: ISO 8601 format (e.g., 2024-01-01T15:04:05Z, default: empty)
      • to_date: ISO 8601 format (default: empty)
      • appId: Application ID (default: empty)
      • sourceChain: Source chain ID (default: empty)
      • targetChain: Target chain ID (default: empty)
    • Example:
      • Prompt: "Get the transaction count and volume for Solana as the source chain over the last day."
      • Output:
        | from                 | to                   | source_chain | volume            | count |
        |----------------------|----------------------|--------------|-------------------|-------|
        | 2025-01-01T00:00:00Z | 2025-01-02T00:00:00Z | Solana       | 346085661921482   | 550   |
        | 2025-01-02T00:00:00Z | 2025-01-03T00:00:00Z | Solana       | 1915450117554795  | 747   |
        
  3. get_top_assets_by_volume

    • Description: Lists top assets by volume, including emitter and token chains.
    • Parameters:
      • timeSpan: 7d, 15d, 30d (default: 7d)
    • Example:
      • Prompt: "List the top assets by volume for the past 15 days."
      • Output:
        | emitter_chain | symbol | token_chain | token_address                            | volume         |
        |---------------|--------|-------------|------------------------------------------|----------------|
        | Solana        | WBTC   | Ethereum    | 0000000000000000000000002260fac5e5542a773aa44fbcfedf7c193bc2c599 | 25101807.78824 |
        | Ethereum      | RNDR   | Ethereum    | 0000000000000000000000006de037ef9ad2725eb40118bb1702ebb27e4aeb24 | 9829032.688    |
        
  4. get_top_chain_pairs_by_num_transfers

    • Description: Returns top chain pairs by number of transfers.
    • Parameters:
      • timeSpan: 7d, 15d, 30d (default: 7d)
    • Example:
      • Prompt: "Show the top chain pairs by number of transfers for the last 7 days."
      • Output:
        | source_chain | destination_chain | number_of_transfers |
        |--------------|-------------------|---------------------|
        | Optimism     | Solana            | 2849                |
        | Ethereum     | Solana            | 2466                |
        | Base         | Arbitrum          | 1993                |
        
  5. get_top_symbols_by_volume

    • Description: Fetches top symbols by volume and transaction count.
    • Parameters:
      • timeSpan: 7d, 15d, 30d (default: 7d)
    • Example:
      • Prompt: "What are the top symbols by volume over the last 30 days?"
      • Output:
        | symbol | volume          | txs |
        |--------|-----------------|-----|
        | WBTC   | 28434555.496489 | 133 |
        | RNDR   | 9829032.688     | 49  |
        | WETH   | 9662352.854166  | 60  |
        
  6. get_top100_corridors

    • Description: Lists top 100 token corridors by number of transactions.
    • Parameters:
      • timeSpan: 2d, 7d (default: 2d)
    • Example:
      • Prompt: "Get the top 100 token corridors by transactions for the last 7 days."
      • Output:
        | source_chain | target_chain | token_chain | token_address                            | txs |
        |--------------|--------------|-------------|------------------------------------------|-----|
        | Optimism     | Solana       | Optimism    | 000000000000000000000000ef4461891dfb3ac8572ccf7c794664a8dd927945 | 2777|
        | Base         | Arbitrum     | Base        | 000000000000000000000000271cdba25be9be2e024bc0a550012b2e5934420e | 1892|
        
  7. get_kpi_list

    • Description: Retrieves key performance indicators (KPIs) for the Wormhole protocol.
    • Parameters: None
    • Example:
      • Prompt: "Show me the key performance indicators for Wormhole."
      • Output:
        | 24h_messages | total_messages | total_tx_count | total_volume       | tvl         | 24h_volume   | 7d_volume    | 30d_volume    |
        |--------------|----------------|----------------|--------------------|-------------|--------------|--------------|---------------|
        | 192987       | 1111114235     | 6023755        | 60718344331.570806 | 2582546224  | 22688586.172 | 252786937.009| 1349155202.545|
        

License

This project is licensed under the MIT License. See the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured