Wolfram Alpha MCP Server
Enables scientific computing, mathematical problem solving, and step-by-step mathematical solutions through Wolfram Alpha's mobile API. Supports real-time streaming responses and multiple output formats for enhanced mathematical and scientific queries.
README
Wolfram Alpha MCP Server
Wolfram Alpha MCP Server 是一个基于 Model Context Protocol (MCP) 的服务器,提供对 Wolfram Alpha 移动端 API 的访问,支持科学计算、数学求解等功能。
功能特性
- 🔬 科学计算: 支持复杂的数学计算和科学问题求解
- 📝 分步解答: 提供详细的数学问题分步解答
- 🌐 多格式输出: 支持 plaintext、JSON 等多种输出格式
- 🚀 高性能: 基于 Wolfram Alpha 移动端 API,响应快速
- 📡 流式响应: 支持 Streamable HTTP 协议,提供实时流式数据
- ⚡ 实时体验: 流式工具提供更好的用户交互体验
安装
从 PyPI 安装
pip install wolfram-alpha-mcp-server
从源码安装
git clone https://github.com/your-username/wolfram-alpha-mcp-server.git
cd wolfram-alpha-mcp-server
pip install -e .
使用方法
1. 启动 MCP 服务器
python server_remote.py
或者使用命令行工具:
wolfram-alpha-mcp
2. 配置 MCP 客户端
在您的 MCP 客户端配置文件中添加以下配置:
{
"mcpServers": {
"wolfram-alpha": {
"command": "uvx",
"args": ["wolfram-alpha-mcp-server@latest"]
}
}
}
3. 使用工具
服务器提供以下5个工具:
wolfram_alpha_query
基础查询工具,用于科学和事实信息查询。
# 示例查询
result = await wolfram_alpha_query("What is the derivative of x^2?")
wolfram_mobile_query
高级查询工具,支持自定义格式和参数。
# 示例查询
result = await wolfram_mobile_query(
query="plot sin(x)",
format_type="plaintext",
output_type="json"
)
wolfram_step_by_step
分步解答工具,专门用于数学问题的详细解答。
# 示例查询
result = await wolfram_step_by_step("solve x^2 + 5x + 6 = 0")
wolfram_streaming_query
流式查询工具,支持实时流式响应,提供更好的用户体验。
# 示例流式查询
result = await wolfram_streaming_query("What is the integral of x^2?")
import json
data = json.loads(result)
for chunk in data['streaming_chunks']:
print(f"[{chunk['type']}] {chunk['content']}")
wolfram_streaming_step_by_step
流式分步解答工具,实时显示数学问题的分步求解过程。
# 示例流式分步解答
result = await wolfram_streaming_step_by_step("solve x^2 + 5x + 6 = 0")
import json
data = json.loads(result)
for chunk in data['streaming_chunks']:
print(f"[{chunk['type']}] {chunk['content']}")
服务配置
Server Config
{
"command": "uvx",
"args": ["wolfram-alpha-mcp-server-xiaomayisjh@latest"]
}
环境变量
当前版本使用内置的移动端 API 配置,无需额外环境变量。
开发
项目结构
wolfram-alpha-mcp-server/
├── server_remote.py # 远程版本服务器
├── server.py # 本地版本服务器
├── setup.py # 包安装配置
├── pyproject.toml # 项目配置
├── requirements.txt # 依赖列表
├── README.md # 项目说明
└── mcp.json # MCP 客户端配置示例
依赖项
mcp-server>=0.1.0: MCP 服务器框架requests>=2.31.0: HTTP 请求库anyio>=3.7.0: 异步 I/O 库
构建和发布
# 构建包
python -m build
# 发布到 PyPI
python -m twine upload dist/*
许可证
本项目采用 MIT 许可证。
贡献
欢迎提交 Issue 和 Pull Request!
支持
如果您遇到任何问题,请:
- 查看 Issues 页面
- 创建新的 Issue 描述您的问题
更新日志
v1.0.0
- 初始版本发布
- 支持基础查询、分步解答、高级查询等功能
- 支持远程部署和托管
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.