wizzy-mcp-tmdb
A MCP server for The Movie Database API that enables AI assistants to search and retrieve movie, TV show, and person information.
README
wizzy-mcp-tmdb
Project Overview and Purpose
The wizzy-mcp-tmdb project is an MCP (Model Context Protocol) server implemented in JavaScript that provides tools to search and retrieve information from The Movie Database (TMDB). It allows AI clients to access movie, TV show, and person data through a standardized protocol.
Key Features
- Search Movies: Perform multi-search across movies, TV shows, and people using the
search_tmdbtool. - Get Details: Fetch detailed information for specific items using the
get_tmdb_detailstool. - Trending Content: Retrieve trending content across all media types with the
trending_alltool.
Installation
Prerequisites
- Node.js version 18 or higher (required for global fetch support)
- A TMDB API key (Bearer token) from your admin, used with the TNL TMDB proxy (production-api.tnl.one)
Setup
-
Clone the repository and navigate to the project directory.
-
Install dependencies:
npm install -
Set up your TMDB API key as an environment variable:
-
On Windows PowerShell:
$env:TMDB_AUTH_TOKEN="YOUR_TNL_PROXY_BEARER_TOKEN" -
On macOS/Linux:
export TMDB_AUTH_TOKEN="YOUR_TNL_PROXY_BEARER_TOKEN"
-
Usage
Starting the MCP Server
To start the server:
npm start
The server communicates over stdio and should be configured in your MCP-compatible client (e.g., IDE or chat client) with the command node mcp-tmdb-server.js and the TMDB_AUTH_TOKEN environment variable.
MCP Integration Examples
Here are code snippets showing how to integrate with the MCP tools:
Search for Movies
// Example MCP tool call for searching
{
"method": "tools/call",
"params": {
"name": "search_tmdb",
"arguments": {
"query": "dune",
"page": 1,
"language": "en-US",
"include_adult": false
}
}
}
Get Movie Details
// Example MCP tool call for getting details
{
"method": "tools/call",
"params": {
"name": "get_tmdb_details",
"arguments": {
"type": "movie",
"id": 438631,
"append": "credits,images"
}
}
}
Get Trending Content
// Example MCP tool call for trending content
{
"method": "tools/call",
"params": {
"name": "trending_all",
"arguments": {
"time_window": "day",
"page": 1,
"language": "en-US"
}
}
}
MCP Client Integration
Per integrare questo MCP server nel tuo client MCP (come un IDE o un client di chat compatibile), segui questi passi:
-
Installa il pacchetto npm se necessario:
npm install -g wizzy-mcp-tmdb -
Crea o aggiorna il file
mcp.jsonnel tuo client MCP con la seguente configurazione:{ "mcpServers": { "tmdb": { "command": "npx", "args": ["wizzy-mcp-tmdb"], "env": { "TMDB_AUTH_TOKEN": "YOUR_TNL_PROXY_BEARER_TOKEN" }, "alwaysAllow": [ "get_watch_providers", "discover_tv", "discover_by_provider" ] } } }Nota: Il
TMDB_AUTH_TOKENpuò essere impostato a un valore casuale per ora, poiché le chiamate API TMDB sono gratuite e non richiedono autenticazione obbligatoria.
Testing Strategy
The project uses Jest for comprehensive testing, including:
- Unit Tests: Validate individual handler functions, input validation, and response formatting (see
tests/unit/handlers.test.js). - Integration Tests: Test API interactions with mocked responses, error handling, and network failures (see
tests/integration/api.test.js). - Protocol Tests: Ensure MCP protocol compliance, including tool listing and calling (see
tests/protocol/mcp.test.js).
Run the test suite with:
npm test
For watch mode:
npm run test:watch
Project Structure
wizzy-mcp-tmdb/
├── mcp-tmdb-server.js # Main MCP server implementation
├── package.json # Project configuration and dependencies
├── MCP_GUIDE.md # Detailed MCP integration guide
├── babel.config.cjs # Babel configuration for Jest
├── tests/
│ ├── unit/
│ │ └── handlers.test.js # Unit tests for handlers
│ ├── integration/
│ │ └── api.test.js # Integration tests for API calls
│ └── protocol/
│ └── mcp.test.js # MCP protocol compliance tests
└── tests/fixtures/ # Mock data for tests
├── movieDetails.json
├── searchMultiResponse.json
└── trendingAllResponse.json
Contributing
We welcome contributions! Please follow these guidelines:
- Fork the repository.
- Create a feature branch.
- Make your changes and add tests.
- Ensure all tests pass.
- Submit a pull request.
License
This project is licensed under the MIT License. See the LICENSE file for details.
Acknowledgments
- Thanks to The Movie Database (TMDB) for providing the API.
- Built using the Model Context Protocol SDK.
Contact
For questions or support, please open an issue on GitHub.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.